Глава 16. Почему так много непонятного в квантовом мире?

Начнем с нескольких коротких фраз и выражений:

Кварк.

Квантовая пена.

Квантовое туннелирование.

Квантовая клаустрофобия.

Квантовая клаустрофобия!

Квантовая теория полна неожиданных названий и ярких метафор. Отчасти начало этой тенденции было положено Мюрреем Геллманном, получившим Нобелевскую премию в 1969 г. за созданную им классификацию элементарных частиц и их взаимодействий. Его теория предсказала существование кварков, неких гипотетических элементарных частиц, являющихся «кирпичиками», из которых построены протоны, нейтроны и вся материальная основа окружающего мира. Почему Геллманн назвал эти частицы кварками? В поисках термина для обозначения совершенно нового объекта он натолкнулся на таинственную фразу из очень сложного для понимания романа Джеймса Джойса «Поминки по Финнегану»: «Три кварка для мастера Марка». Она понравилась Геллманну тем, что в его теории гипотетические кварки часто появлялись по трое. Позднее удалось не только доказать существование кварков, но и обнаружить целый набор их разновидностей, которым физики также дали самые разные названия: верхний, нижний, очарованный, странный, красивый и истинный. Кроме того, оказалось, что каждый кварк обладает свойством, которое было названо «цветом». Разумеется, это понятие не имеет отношения к реальной окраске. Таким образом появились красный, зеленый и синий кварки. Пока изолированные кварки выделить не удалось, однако факт их существования надежно доказан весьма сложными экспериментами.

Не менее странным представляется понятие квантовой пены. Предлагаю читателю самому разобраться с определением, использованным Брайаном Грином в книге «The Elegant Universe» («Элегантная вселенная»): «…на ультрамикроскопическом уровне ткань пространства-времени выглядит как бы вспененной, искореженной». Под «тканью» автор подразумевает единое пространство-время в теории относительности Эйнштейна. Описание такой квантовой пены оказалось весьма сложной проблемой для физиков, пытающихся объединить теорию относительности с квантовой механикой.

Квантовое туннелированые означает способность объектов проникать через барьеры, непроницаемые для них в механике Ньютона. Это простое утверждение приводит к совершенно неожиданным последствиям.

Возможно, читатель испытает некоторое облегчение, узнав, что квантовая клаустрофобия — всего лишь другое название квантовых флуктуации, обусловленных принципом неопределенности Гейзенберга (мы вернемся к этой проблеме, поскольку с ней связаны многие задачи квантовой механики).

Неудивительно, что Нильс Бор, знаменитый физик, один из отцов квантовой механики и лауреат Нобелевской премии, как-то публично заявил, что тот, у кого от квантовой теории не начинается головокружение, еще просто ничего в ней не понимает.

Почти каждый автор, пишущий о квантовой физике, характеризует ее как «странную» или «загадочную». Причины этого теперь вполне очевидны. На фоне законов классической физики квантовые законы действительно столь причудливы и странны, что даже Эйнштейн, сам очень много сделавший для развития квантовой теории, позднее предлагал полностью от нее отказаться. Теория тем не менее продолжала развиваться (несмотря на то, что некоторые ученые до сих пор продолжают спорить о ее смысле) и стала одним из самых важных и успешных разделов современной физики.

Интересно проследить, каким образом возникли и развивались парадоксальные физические идеи и представления. В 1900 г. Макс Планк обнаружил, что атомы нагретого тела излучают энергию только совершенно определенными порциями (до этого считалось, что излучение имеет непрерывный характер). Планк ввел понятие кванта энергии, на основе которого возник огромный раздел физики (ему посвящена гл. 15 нашей книги). В 1905 г. Эйнштейн установил, что свет состоит из частиц, или квантов, получивших название фотонов. В 1913 г. 28-летний датский физик Нильс Бор предложил основанную на квантовомеханических представлениях модель строения атома водорода, послужившую ключом к пониманию общих законов атомного мира. С 1916 г. интерес физиков переключился с квантовой механики на общую теорию относительности, предложенную Эйнштейном, однако начиная с 1924 г. вновь возник небывалый поток идей и публикаций по квантовой механике.

Именно в 1924 г. французский физик, герцог Луи де Бройль, возвращаясь к эйнштейновским представлениям 1905 года о фотонах, показал теоретически, что любые частицы могут быть описаны так называемой волновой функцией (т. е. распространяются в виде волн, прежде чем стать частицами). Его идея вызвала дебаты, продолжающиеся до наших дней. Формула де Бройля позволяла вычислить длину волны, соответствующую различным частицам, и справедливость этой формулы была подтверждена экспериментально в 1927 г. Работы де Бройля быстро принесли ему мировое признание, и в 1929 г. он был удостоен Нобелевской премии. Через год 24-летний немецкий физик Вернер Гейзенберг впервые разработал полную квантовомеханическую теорию, а буквально несколько месяцев спустя австриец Эрвин Шредингер предложил еще один подход, в котором использовался более простой математический аппарат. Однако вскоре выяснилось, что эти разные на первый взгляд концепции совершенно эквивалентны. При этом оба подхода не ответили на вопрос: что представляют собой эти волны? В известном фильме «Китайский квартал» есть запоминающийся и яркий эпизод, когда героиня (которую играет Фэй Дануэй) после каждой пощечины допрашивающего ее сыщика (знаменитый артист Джек Николсон) меняет свои показания («я — ее сестра!.. я — ее мать!), играющие важную роль в развитии сюжета. Так ведут себя и фотоны, как бы меняя свой облик при каждом запросе: «я — волна… я — частица… я — волна… я — частица…». В конце фильма выясняется ужасный факт, что героиня, которую играет Дануэй, действительно является одновременно сестрой и матерью (она забеременела от своего отца), и многим физикам поведение фотонов и других субатомных частиц кажется столь же чудовищным.

Объяснение этого дуализма было предложено немецким физиком Максом Борном и заключается в том, что связанная с частицей волна характеризует лишь вероятность появления частицы в данный момент времени в данной точке пространства. При этом волны можно разделить на части и накладывать друг на друга, в то время как никогда не наблюдается, например, «полэлектрона». Волны позволяют электрону иметь определенную вероятность появиться в виде частицы. Эта ситуация казалась Эйнштейну совершенно абсурдной, и он писал Борну в 1926 г.: «Я не могу поверить, что Бог играет миром в кости». Забавно, что внучка М. Борна, знаменитая австралийская поп-звезда Оливия Ньютон-Джон недавно предложила какой-то необычный и странный вариант игры в кости (я подразумеваю обычную, а не кварковую «странность»!).

Возможно, именно из-за серьезных возражений Эйнштейна по поводу вероятностной трактовки волновой функции М. Борн получил Нобелевскую премию лишь в 1954 г., в то время как Вернер Гейзенберг удостоился ее уже в 1932 г. за разработанный в 1927 г. принцип неопределенности, остающийся до настоящего времени одним из ключевых моментов квантовой физики. С пугающей прямолинейностью этот принцип утверждает, что положение и скорость субатомной частицы нельзя измерить одновременно, поскольку сам процесс измерения приводит к изменению либо скорости, либо координаты. Собственно говоря, и в обыденной жизни мы на каждом шагу сталкиваемся с принципом неопределенности, так как абсолютная точность измерений в макромире тоже невозможна (например, измеряя рулеткой картину, мы получаем примерные размеры, из-за чего приготовленная рамка оказывается меньше требуемой, и мы вставляем картину, применив некоторое усилие). Для крупномасштабных объектов эти обстоятельства обычно роли не играют, но на субатомном уровне даже слабый толчок может заставить электрон «выпрыгнуть» из атома с огромной скоростью. Атомные структуры настолько хрупки, что их может разрушить попадание единственного фотона. Кроме того, увеличение точности измерения положения увеличивает погрешность в определении скорости, и наоборот. Субатомные частицы, образно говоря, плохо поддаются ловле. Иногда, впрочем, эта неопределенность может играть и положительную роль. Например, происходит туннелирование сквозь барьер, которое объясняется тем, что на очень короткое время (предположим, на одну миллиардную долю секунды, которую физики называют наносекундой) субатомная частица может изменить свою природу и проникнуть сквозь непреодолимый энергетический барьер. Такие события можно использовать в практических целях, например, для создания «сканирующих туннельных микроскопов» (СТМ). Первый микроскоп этого типа был сконструирован Гердом Биннингом и Генрихом Рорером в одном из исследовательских центров фирмы IBM (Цюрих, Швейцария) в 1981 г., а сейчас они получили широкое распространение. СТМ позволяют изучать поверхность объектов деталей размером до миллиардной доли метра, что дает возможность рассмотреть и сфотографировать цепочки атомов.

Вернер Гейзенберг в молодости, когда он сформулировал знаменитый «принцип неопределенности», который внес в квантовую физику дух таинственности. (С любезного разрешения Американского института физики. Архив Эмилио Сегре.)

1920-е годы были временем бурного развития квантовой теории, когда серьезные публикации появлялись чуть ли не каждую неделю. В 1927 г. швейцарский физик Вольфганг Паули сформулировал принцип, согласно которому две частицы в атоме не могут одновременно иметь одинаковые наборы квантовых чисел, т. е. находиться в одинаковых квантовых состояниях (этим впоследствии объяснили различные типы кварков и наличие у них «цвета»). Принцип запрета Паули кажется проще других положений квантовой теории, но он имеет огромное практическое значение, поскольку позволяет связать теорию с другими научными дисциплинами. Периодическая система элементов, построенная русским химиком Дмитрием Менделеевым и дополненная впоследствии рядом других ученых, позволила систематизировать химические элементы в соответствии с их атомными весами. Элементы со сходными свойствами (например, натрий и калий) располагаются в таблице с определенной периодичностью, причина которой оставалась непонятной до тех пор, пока не появился принцип запрета Паули.

Принцип Паули позволяет объяснить периодичность, связывая ее с орбитами, по которым электроны вращаются вокруг ядра подобно планетам в Солнечной системе. В справочнике «Physics in the Twentieth Century» («Физика в двадцатом столетии») Курт Сапли пишет по этому поводу: «По мере увеличения размеров атомов последовательно заполняются электронные энергетические уровни, или «оболочки». Рано или поздно два электрона должны были бы оказаться в одинаковых квантовых состояниях, так что один из них должен перейти на следующую оболочку. Химические свойства элементов определяются числом электронов, расположенных на внешних оболочках, заполненных лишь частично. Тем самым химия оказывается нераздельно связана с квантовой теорией». В 1931 г. Паули предсказал также существование нейтрино — электрически нейтральной частицы, которая была обнаружена лишь в 1955 г. За открытие принципа запрета В. Паули получил Нобелевскую премию в 1945 г., одним из последних среди физиков первого поколения, разработавших квантовую теорию. Возможно, это объясняется тем, что он был довольно язвительным критиком многих коллег. Например, по поводу идеи, связанной с паранормальными явлениями, Паули сказал, что «ее нельзя считать даже неправильной».

Важным этапом развития квантовой механики стала разработка в 1928 г. английским физиком Полем Дираком теории электронов, включающей важную квантовую характеристику — спин. К этому времени научное сообщество было основательно дезориентировано непрекращающимся потоком открытий и новых идей. Однако 23-летнему Дираку даже в этой ситуации удалось ошеломить научный мир. Дирак обнаружил и поначалу был обескуражен полученным результатом, что каждому электрону соответствует «партнер с отрицательной энергией». Это стало первым свидетельством существования в природе антивещества (его контакт с обычным веществом приводит к их взаимному уничтожению, аннигиляции). Открытие казалось столь странным, что физики стали с подозрением относиться и к другим работам Дирака. Однако через четыре года американский физик Карл Андерсон из Калифорнийского технологического института, изучая следы частиц космического излучения в камере Вильсона, обнаружил античастицы. Привычный электрон имел отрицательный электрический заряд. В отличие от обычного (отрицательно заряженного) электрона «антиэлектрон» обладал положительным зарядом (отметим, что в английском языке слово «антиэлектрон» имеет некий негативный оттенок). Позднее антиэлектроны были названы позитронами. Эксперименты Андерсона, в которых наблюдались позитроны, показали, что Дирак не ошибался в своих предсказаниях и антивещество действительно существует. Дирак получил Нобелевскую премию по физике (вместе с Эрвином Шредингером) в 1933 г., а Карл Андерсон — в 1936 г. совместно с другим исследователем космических лучей австрийцем Виктором Гессом.

Чем больше ученые знакомились с законами квантового мира, тем острее становились споры относительно сути самой квантовой теории. Активное участие в дискуссиях принимал Альберт Эйнштейн. Несмотря на то что в свое время именно его теории значительно преобразовали ньютоновскую картину мира, по крайней мере, в масштабах космоса, Эйнштейн оставался предан классическим взглядам, и его очень беспокоило, что теорию относительности не удавалось объединить с квантовой механикой. Более того, квантовая механика нарушала законы Ньютона не только в масштабах космоса, но и в условиях повседневной жизни. Эйнштейн много лет ожесточенно спорил по этим вопросам с Нильсом Бором, что не мешало им оставаться близкими друзьями и относиться друг к другу с огромным уважением.

Бор постоянно пытался найти связь квантовой механики с остальной физикой. Его подход, известный под названием «копенгагенской интерпретации» (Бор жил и работал в Копенгагене), был основан на предположении, что частицы обладают волновыми свойствами, пока не вступают во взаимодействие с регистрирующим прибором, в результате чего они превращаются в частицы. Иными словами, квантовые частицы сохраняют волновые свойства (в соответствии с принципом неопределенности Гейзенберга), пока не вступают в контакт с прибором. Процесс измерения сопровождается «коллапсом» волновой функции и переводит ее в одно из возможных собственных состояний.

Хотя с копенгагенской интерпретацией квантовой механики согласились многие физики, ряд выдающихся ученых встретил её настороженно. Через год после получения Нобелевской премии Эрвин Шредингер придумал мысленный эксперимент (т. е. интеллектуальное рассуждение, обладающее логикой лабораторного эксперимента), который должен был продемонстрировать абсурдность копенгагенской интерпретации. Этот мысленный эксперимент стал одним из самых известных интеллектуальных построений в истории науки. Представьте себе ящик, в котором находятся живой кот, контейнер с радиоактивным препаратом (например, радием) и ампула с газообразным цианом. Распад атома радия, если он происходит во время пребывания кота в ящике (например, в течение одного часа), приводит в действие механизм, разбивающий ампулу, что сразу убивает кота. Если же распад не происходит, то ампула остается целой, а кот — живым. Согласно копенгагенской концепции, пока ящик закрыт, кот будет либо живым, либо мертвым (поскольку сохраняются обе вероятности). Формально кот будет оставаться в этом двойственном состоянии до момента, пока кто-то не откроет ящик, т. е. произведет наблюдение. При этом неопределенность исчезнет, и кот окажется либо вполне живым, либо мертвым.

Эрвин Шредингер, получивший в 1933 г. вместе с Полем Дираком Нобелевскую премию за развитие квантовой теории. Двумя годами позже, отрицая предложенную Нильсом Бором «копенгагенскую интерпретацию» квантовой механики, он придумал знаменитый мысленный эксперимент, в котором кот одновременно и жив, и мертв. (С любезног® разрешения Института физики. Архив Эмилио Сегре.)

Смысл эксперимента можно разъяснить на примере из обыденной жизни. Представьте себе бизнесмена, имеющего проблемы со здоровьем (например, очень высокое кровяное давление), который, отправляясь в деловую поездку, предварительно заказывает себе в другом городе номер в гостинице и завтрак в 8 часов утра. После того как бизнесмен вечером зайдет в заказанный им номер, строго говоря, уже никто не может с определенностью утверждать, что он всё еще жив. Это можно будет проверить только утром, если он не откроет вовремя дверь номера. В этом случае официант поймёт, что произошло нечто необычное, откроет дверь своим ключом и обнаружит умершего от сердечного приступа бизнесмена и т. д. (чтобы не усложнять проблему, мы даже не рассматриваем сложную ситуацию, когда дверь в номер оказывается закрытой просто потому, что у бизнесмена испортились часы или он перепутал время и задержался в ванной). Очевидно, что подобные рассуждения выглядят довольно нелепо. Именно это и хотел продемонстрировать своим мысленным экспериментом Эрвин Шредингер. Однако обсуждение разных аспектов проблемы «шредингеровского кота» продолжается уже несколько десятилетий и продолжает волновать сторонников копенгагенской школы. Знаменитый Стивен Хокинг однажды раздраженно заявил, что он пристрелил бы этого воображаемого кота, чтобы покончить со спорами. На самом деле мысленный эксперимент Шредингера все еще вызывает интерес по той простой причине, что многие явления квантовой механики очень трудно объяснить и истолковать. Позднее Эйнштейн совместно с двумя другими физиками, Борисом Подольским и Натаном Розеном, придумал другой мысленный эксперимент. Один из парадоксов квантовой механики заключается в том, что два электрона, прошедшие через два разных отверстия, каким-то образом «знают» друг о друге. Эйнштейн с коллегами мысленно увеличили расстояние между отверстиями до гигантских размеров порядка нескольких световых лет (физики часто используют такое «увеличение» для прояснения ситуации) и пришли к логическому выводу, что скорость «обмена информации» между такими электронами должна превосходить скорость света, что невозможно согласно теории относительности. Эйнштейн с явным раздражением называл этот эффект «проделками нечистой силы на расстоянии»[9].

Квантовая механика находит реальное применение в науке и технике (в противном случае не работали бы лазеры). Ученые пытаются создать нечто совсем удивительное, например квантовые компьютеры, в которых электроны общаются друг с другом на расстоянии. Однако при этом механизм квантовых явлений зачастую остается совершенно непонятным. Кроме того, физикам никак не удается объединить квантовую механику с гравитацией, которая тоже реально существует. Многих ученых такая ситуация приводит в отчаяние, и они готовы отказаться от дальнейших попыток понять законы природы. В конце концов, говорят они, можно и не знать, «как устроен» мир, а ограничиться лишь практическим применением известных результатов в рамках существующей квантовой теории.

Но есть физики, которые хотят не только понять, «как устроен» мир, но и четко определить границы, отделяющие квантовый мир от привычного нам мира ньютоновской механики. Они хотят понять, в каком масштабе управляющие миром квантов вероятности уступают место детерминированности, позволяющей существовать коту или хотя бы его трупу? Как из небытия возникают субатомные частицы? Откуда они появляются и куда пропадают? Некоторые ученые хотели бы, чтобы шредингеровский кот не только сдох, но и вообще скрылся с глаз долой, как мертвецы в фильмах ужасов.

За последние годы в квантовой физике бурно развивались новые направления, например теория суперструн, о которой рассказывается в гл. 20. Однако это во многом лишь усложнило квантовое описание мира. Многие ученые крайне удивлены тем, что значительные успехи в теории почти не приблизили нас к пониманию природы вещей. Физикам никак не удается похоронить с достойными почестями несчастного шредингеровского кота, находящегося в полуживом состоянии с 1935 года.

Литература для дальнейшего чтения

 1. Gribbin, John. In Search of Schro dinger's Cat. New York: Bantam, 1984. Эта книга представляет собой одну из первых попыток популярно рассказать о необычном квантовом мире, и она до сих пор не потеряла своей ценности.

2. Gribbin, John. Schrddinger's Kittens and the Search for Reality. Boston: Little, Broun, 1995. Книга является продолжением предыдущей работы автора и написана очень интересно, но многие физики находят ее недостаточно критической.

3. Suplee, Curt. Physics of the 20th Century. New York: Abrams, 1999. Книга выпущена совместно с Американским физическим обществом и Американским институтом физики. Большую часть занимают фотографии, дающие читателю полное представление о развитии современной физики.

4. Lindley, David. The End of Physics. New York: Basic Books, 1993. В книге подвергаются критическому анализу так называемые «непроверяемые» физические теории, получившие распространение в науке с середины 1980-х годов. Скептицизм автора разделяет и Нобелевский лауреат 1988 года Мэлвин Шварц.

5. Perkowitz, Sidney. Universal Foam: From Cappuchino to the Cosmos. New York: Walker, 2000. Как и в другой своей книге (см. литературу к гл. 15), С. Перковиц удачно иллюстрирует квантовомеханические парадоксы примерами из повседневной жизни и сведениями из других научных дисциплин, что делает текст интересным и ярким.

6. Frayn, Michael. Copenhagen. New York: Anchor, 2000. Пьеса, получившая широкое международное признание, посвящена встрече Нильса Бора с Вернером Гейзенбергом, которая действительно имела место во время Второй мировой войны, когда Гитлер предложил Гейзенбергу создать атомную бомбу. Точное содержание беседы остается неизвестным до сих пор. Фрайну удалось связать проблемы квантовой физики и «принципа неопределенности» со сложными психологическими переживаниями персонажей.

7*. Pensore Roger, et al. The Large, the Small and the Human Mind, Cambridge University Press, 2000. [Имеется перевод: Пенроуз Р. и др. Большее, малое и человеческий разум. — М.: Мир, 2003.]

8*. Пономарев Л. И. Под знаком кванта. — М.: Наука, 1989. Доступно и популярно излагаются парадоксы квантовой механики.

9*. Трейман С. Этот странный квантовый мир. — Ижевск: НИЦ «Регулярная и хаотическая динамика», 2002. Компактное и достаточно полное популярное изложение квантовой механики, а также основных принципов теории микрочастиц и квантовой теории поля.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК