Теория Лавлока и определение биомаркера
Результаты спектроскопии, проведенной такими спутниками, как «Нимбус-3», полностью изменили наши представления о жизни на Земле. Со стороны она предстает одной из множества возможных форм существования, которые можно обнаружить, во всяком случае теоретически, направив телескоп на другую планету. Полеты к Венере и Марсу космических аппаратов, не обнаруживших никаких следов жизни, положили конец мифу об обитаемости двух ближайших к нам планет. В отношении Марса еще остается надежда найти подземные организмы или окаменевшие остатки погибших организмов (Моника Грейди писала об этом в главе 7). Некоторые шансы на обитаемость имеют ряд спутников Юпитера или Сатурна, где жизнь могла возникнуть самостоятельно благодаря разогреву приливными силами вследствие огромной силы притяжения планет-гигантов. Бесспорно, однако, что сложная жизнь в Солнечной системе существует только на Земле.
Благодаря развитию технологии мы теперь можем искать жизнь и за пределами Солнечной системы. Вероятность обнаружить ее где-либо во Вселенной растет пропорционально числу открываемых экзопланет (на начало 2016 г. их было около 2000). Мы имеем лишь самые базовые знания о большинстве открытых экзопланет, такие как масса и примерный размер. Но совсем недавно мы научились определять химический состав их атмосферы и температурные условия. Изучать атмосферу экзопланет позволили два метода — транзитная и затменная спектроскопия и спектроскопия методом прямого наблюдения. Транзитный и затменный методы позволяют отделить измеряемые параметры планеты от параметров звезды, вокруг которой она вращается, благодаря изменению положения планеты относительно звезды, а именно когда она проходит перед диском звезды или скрывается за ним. Спектроскопия методом прямого наблюдения — многообещающая новинка, о которой рассказала в предыдущей главе Сара Сигер.
При помощи телескопов «Хаббл» и «Спитцер», а также наземных обсерваторий мы приступили к анализу ключевых химических компонентов и температурных характеристик самых перспективных транзитных экзопланет. Среди них преобладают горячие газовые планеты на очень близких к звезде орбитах. Совсем недавно нам удалось настолько усовершенствовать инструменты и методы анализа данных, что стало возможно определить основные черты атмосферы экзопланет типа «суперземля» — каменистых планет с массой до десяти масс Земли. Однако исследованные на данный момент «суперземли» все-таки слишком горячие, чтобы рассчитывать на их обитаемость.
Новые методы прямого наблюдения начали приносить первые сведения об атмосфере молодых газовых планет, расположенных в значительном удалении от материнской звезды. Самыми значительными текущими проектами на основе этих методов являются Gemini Planet Imager для телескопа Gemini в Чили и SPHERE — инструмент телескопа VLT в пустыне Атакама, также в Чили. Другие ценные инструменты прямого наблюдения экзопланет созданы для телескопов в Калифорнии и на Гавайях.
Итак, как узнать, что планета пригодна для жизни, а возможно, и обитаема? Очевидно, самым важным для понимания происхождения и эволюции планет является знание об их химическом составе и состоянии атмосферы, и без этих данных невозможно выдвигать какие-либо предположения о наличии на них жизни. Последние 50 лет ученые ломали головы над этой проблемой, и в ближайшие десятилетия нам, по всей видимости, удастся получить некоторые ответы, хотя многие препятствия до сих пор не преодолены. Законы физики универсальны — одинаковы в Лондоне, на Луне и на Проксиме Центавра, а Вселенная, по большому счету, однородна, однако у нас до сих пор нет научного определения жизни, применимого и за рамками наших знаний о жизни на Земле. На Земле кислород и озон являются газами биологического происхождения. Следует ли из этого, что нужно искать эти две молекулы на других планетах как доказательство их обитаемости? То есть являются ли эти газы универсальными биомаркерами или присутствуют лишь на Земле?
Джеймс Лавлок одним из первых попытался ответить на эти вопросы строго с научных позиций. В революционных статьях о внеземной жизни, опубликованных еще в начале 1960-х, он стремился дать универсальное определение жизни, которое являлось бы научным и в то же время практичным. Его интерес к этой теме был вызван ожидающимся запуском зондов НАСА «Викинг-1» и «Викинг-2», которые должны были сесть на Марс и наряду с прочим заняться поиском следов жизни на его поверхности. Лавлок скептически отнесся к всевозможным механизмам, с помощью которых его коллеги собирались искать эти следы, в том числе к маленьким ловушкам для марсианской живности. Лавлок утверждал: чтобы понять, может ли Красная планета быть обитаемой, нужно изучать не ее поверхность, а крайне слабую атмосферу. Состояние атмосферы необитаемой планеты очень близко к химическому равновесию — именно это и обнаружили «Викинги», вследствие чего Лавлок сделал вывод, что на Марсе жизни нет. Как я объясняла в предыдущем разделе, содержание кислорода и озона в нашей атмосфере стало увеличиваться после появления многоклеточных, так что ныне атмосфера Земли содержит бесспорное свидетельство наличия живых существ, которые насыщают ее кислородом. Если бы жизнь на Земле вымерла, кислород и озон также быстро исчезли бы, поскольку вступали в реакции с другими химическими соединениями вплоть до достижения равновесия. Земными биомаркерами являются сезонные колебания концентрации CO2, потому что растения находятся в состоянии вегетации летом и замирают на зимний период, а также так называемый «сигнал красного края». Это остроумное наблюдение заслуживает некоторых пояснений. В ходе фотосинтеза растения поглощают свет преимущественно видимой части спектра, а инфракрасный свет с большой длиной волны просто отражают. Эта «отражательная способность» растительности сразу же выявляется в ходе спутниковых измерений. Построив график зависимости интенсивности света от длины волны, мы увидим резкий спад (красный край) при переходе от более длинных (инфракрасных) волн к более коротким (волнам видимого света).
Метод обнаружения вероятной жизни на планете по составу ее атмосферы применим и к экзопланетам. Данное Лавлоком определение биомаркера — по сути химически неравновесного состояния, вызванного наличием живых организмов, — на данный момент является единственным научно-строгим понятием, которым мы располагаем. Однако оно несовершенно, и возможно, что обитаемые миры при наблюдении ничем не будут выделяться из множества похожих планет. Главное, мы недостаточно представляем химический состав атмосферы экзопланет: находятся ли они по большей части в равновесном состоянии или в неравновесном, но вызванном абиогенными процессами, как это следует из компьютерного моделирования. Все, что нам сейчас доступно, — это изучать и наблюдать огромное число планет нашей Галактики, имеющих разные размеры, температуру и материнские звезды, пытаясь понять, что могут представлять собой миры предполагаемых инопланетян. Без этой информации, следовательно, и без общей картины мы рискуем без должных оснований объявить планету обитаемой исключительно в соответствии с вышеприведенным определением биомаркера.
Больше книг — больше знаний!
Заберите 30% скидку новым пользователям на все книги Литрес с нашим промокодом
ПОЛУЧИТЬ СКИДКУ