Эритроциты
Гемоглобин в одной из форм представляет собой ярко-красное соединение и придает этот цвет своему контейнеру – эритроциту (что по-гречески означает «красная клетка»). Именно этот форменный элемент часто в обиходе называют красные кровяные тельца или просто красные клетки. Разумеется, отдельный эритроцит вовсе не красный, а скорее желтоватый. Однако при скоплении эритроцитов цвет действительно сгущается до красного, придавая крови знакомый всем нам цвет.
Возникает вопрос, а можно ли называть эритроцит клеткой, ведь он не содержит ядра. Поэтому-то его часто называют красным кровяным тельцем. Эритроцит меньше обычной средней клетки и в диаметре составляет 7,2 микрометра. Более того, он дискообразный, толщиной всего в 2,2 микрометра. Он тоньше в центре, поэтому его можно описать как двояковогнутый диск. Это утоньшение позволяет разместить гемоглобин эритроцита ближе к поверхности и усиливает утилизацию кислорода.
Когда эритроциты впервые изучали под микроскопом, эти инструменты не были достаточно точными, чтобы правильно показать форму. Эритроциты казались крошечными сферами на грани видимости и были названы глобулы. Белки, полученные из них, были, следовательно, названы глобулины, или глобины, и именно этому недоразумению мы обязаны возникновением слова гемоглобин.
Если эритроцит не является клеткой в полном смысле слова, он, по крайней мере, начинает жизнь как обычная клетка. Изначально он образуется в костном мозге черепа, ребер и позвоночника, а у детей также и в костном мозге на конце длинных (трубчатых) костей руки и ног. Процесс образования эритроцитов называется эритропоэз (от греческого слова «поэзис» – выработка). То, что позднее станет эритроцитом, вначале было обыкновенной, довольно большой клеткой, оснащенной ядром, но не содержащей гемоглобина. На ранней стадии это еще мегалобласт (что по-гречески означает «большой бутон»), так сказать бутон, из которого в конечном счете расцветет эритроцит. Мегалобласт получает гемоглобин и становится эритробластом (по-гречески «красный бутон»). Затем, по мере деления, он уменьшается в размерах и становится нормоблистом (по-гречески «нормальный бутон»), поскольку теперь обретает нормальный размер эритроцита. Но на этой стадии он все еще имеет ядро и все еще является обычной клеткой.
На следующей стадии он теряет ядро и становится ретикулоцитом (что по-гречески значит «сетчатая клетка»), потому что при надлежащей окраске на его поверхности проявляется замысловатый сетчатый рисунок. Ретикулоцит выбрасывается в кровоток и через несколько часов становится вполне сформировавшимся эритроцитом. В крови здорового человека одна клетка из каждых двухсот находится на стадии свежеобразованного регикулоцита. В случаях, когда по какой-либо причине желательно стимулировать образование эритроцитов, первым признаком того, что лечение удачно, является рост соотношения ретикулоцитов в крови. Это – ретикулоцитный ответ.
В процессе эритропоэза образуется почти невероятное количество эритроцитов. Одна только капля крови содержит приблизительно 50 кубических миллиметров, а в каждом кубическом миллиметре мужской крови в среднем содержится 5,4 миллиона эритроцитов. Соответствующая цифра для женской крови чуть меньше – 4,8 миллиона[10]. Это означает, что среднестатистический мужчина будет иметь около 25 триллионов эритроцитов, а среднестатистическая женщина – 17 триллионов.
Как только эритроцит достигает стадии, на которой теряет свое ядро, он больше не может расти и делиться. Может только продолжать вести собственную жизнь, причем не такую уж долгую – его жизнь, состоящая в проталкивании по кровеносным сосудам и особенно в протискивании через капилляры, весьма напряженная. Средняя продолжительность жизни эритроцита – 125 дней. Остатки разрушенных эритроцитов, достигших конца своей полезной жизни, можно увидеть под микроскопом в виде гемоконии, или кровяных пылинок. Они фильтруются в селезенке и поглощаются там большими клетками-«уборщиками», называемыми макрофагами (что по-гречески значит «большие любители поесть»).
В среднем 1/25 всех наших эритроцитов погибает ежедневно, или 2,3 миллиона ежесекундно. К счастью, организм прекрасно приспособлен к тому, чтобы непрерывно образовывать новые эритроциты с одинаковой скоростью на протяжении всей жизни, а если потребуется, то и с гораздо большей скоростью. Один из способов стимулировать эритропоэз – заставить кровь постоянно испытывать недостаток кислорода. Такое случается на больших высотах, где воздух разряжен. При таких обстоятельствах образуется больше эритроцитов, и у людей, живущих высоко над уровнем моря, количество эритроцитов может составлять 8 миллионов на кубический миллиметр.
В крупных кровеносных сосудах эритроциты имеют тенденцию складываться друг с другом плоской стороной. Этот процесс называется образованием «монетных столбиков», но более наглядно мы можем представить его себе в виде стопки блинов. Кровь течет по крупным сосудам гораздо свободней, когда эритроциты аккуратно сложены таким образом. Однако образование «монетных столбиков» невозможно в капиллярах, диаметр которых едва ли больше самих эритроцитов. Эритроциты вынуждены ползти по капиллярам по одному, медленно проталкиваясь через узкие отверстия, подобно человеку, осторожно передвигающемуся по узкому и низкому туннелю на четвереньках. Это не так уж и плохо, поскольку дает им достаточно времени, чтобы запастись кислородом или отдать его.
Один эритроцит содержит около 270 миллионов молекул гемоглобина, а каждая молекула имеет четыре группы гемов. Каждая группа обладает способностью прикреплять к себе одну молекулу кислорода. Следовательно, эритроцит, который входит в капилляры легких без кислорода, выходит нагруженный более чем миллиардом молекул кислорода. Вода такого же объема может с помощью простого растворения нести не более 1/70 этого количества. Наличие гемоглобина, таким образом, повышает эффективность кровотока как переносчика кислорода в 70 раз. Вместо того чтобы иметь 4,5-секундный резервный запас кислорода в нашем кровотоке, мы имеем 5-минутный запас. Однако это не так уж и много, и нескольких минут пребывания без кислорода достаточно, чтобы мы задохнулись, но, по крайней мере, это дает нам достаточный запас надежности для продолжения жизни.
Когда кислород проникает через тройной барьер (альвеолярную мембрану, стенку капилляра и оболочку эритроцита) и прикрепляется к молекуле гемоглобина, образуется новое соединение – оксигемоглобин. Именно оксигемоглобин имеет тот ярко-красный цвет, который мы считаем цветом крови. Гемоглобин, не обогащенный кислородом, синевато-алого цвета. По мере того как кровь проходит по большому кругу кровообращения и теряет кислород, ее цвет постепенно темнеет, до тех пор пока в венах не становится совсем синим. Вы можете видеть этот синий цвет вен на тыльной стороне своей руки, на внутренней стороне запястья и в любом другом месте, где вены близко подходят к поверхности тела, если только кожа у вас достаточно светлая. У людей со смуглой кожей цвет оказывается зеленоватый, потому что вы видите вены через слой кожи, который может содержать небольшое количество желтоватого пигмента. Тем не менее не у многих из нас этот синий или зеленый цвет ассоциируется с кровью, потому что кровь, которую мы видим при кровотечении, всегда ярко-красная. Даже если мы перережем вену и позволим темной крови хлынуть наружу, она впитает кислород, как только войдет в контакт с воздухом, и станет темно-красной.
Ярко-красная, обогащенная кислородом кровь называется артериальной, поскольку она находится в аорте и других артериях большого круга кровообращения. Темная, бедная кислородом кровь называется венозной, поскольку она находится в венах большого круга кровообращения. Эта терминология не совсем соответствует действительности, поскольку в малом круге кровообращения ситуация конечно же противоположная. Легочная артерия транспортирует не обогащенную кислородом кровь к легким и, значит, несет венозную кровь, несмотря на то что она артерия. Что же касается легочной вены, то она поставляет организму свежайшую артериальную кровь.
Больше книг — больше знаний!
Заберите 30% скидку новым пользователям на все книги Литрес с нашим промокодом
ПОЛУЧИТЬ СКИДКУ