Насыщение атмосферы планеты кислородом
При нагревании планеты ее гидросфера активизируется. Лед растает, превратится в воду, потечет по руслам рек в озера, испарится и вернется снова в виде дождя и снега. Чем быстрее вода войдет в такой круговорот, тем скорее денитрифицирующие бактерии сломают азотные наросты, что увеличит попадание азота в атмосферу, а разрастание растений ускорит производство кислорода. Активация гидросферы также послужит разрушению окисляющих минералов в марсианском реголите, таким образом высвобождая дополнительный кислород. Но достижение нужной для дыхания концентрации кислорода в атмосфере может оказаться трудным делом. Бактерии и примитивные растения могут выжить в атмосфере без кислорода, но более развитая флора требует хотя бы 1 мбар, а человеку нужны все 120 мбар. Хотя в марсианском реголите и есть высшие оксиды и нитраты, которые можно подогреть и получить кислород, такой способ потребует огромных энергетических затрат — около 2 млн ГВт?лет на каждый миллибар. Это слишком дорого для практического использования — если только мы не уговорим землян заплатить за нас.
Научное представление будущего Марса после терраформирования. Обратите внимание на большое количество прибрежной недвижимости. Рисунок Дейна Балларда
Подобный расход энергии требуется заводам для получения кислорода из углекислого газа. Но у них хотя бы есть преимущество: будучи однажды созданными, они станут работать самостоятельно. Таким образом, производство кислородной атмосферы для Марса разделится на два этапа. На первом пионеры-цианобактерии и примитивные растения произведут достаточное количество кислорода (около 1 мбар) для распространения по планете высшей флоры. Когда начальное количество кислорода будет достигнуто, при умеренном климате, уплотненной углекислой атмосфере, сниженной дозе космической радиации и хорошей циркуляции воды на волю будут выпущены специальные генетически выведенные растения вместе со своими бактериями-симбионтами — чтобы расти на марсианском реголите и выполнять процесс фотосинтеза. При условии, что глобального распространения можно достичь за несколько десятков лет и что такие растения можно создать с производительностью 1 % (довольно высокая, но не неизвестная среди земных растений), они будут представлять собой источник производства кислорода эквивалентный 200 000 ГВт. Используя такие биологические системы, необходимое для человека и других высших животных количество кислорода в 120 мбар может быть произведено за 1200 лет.
Да, знаю, для многих это слишком долго. Но когда мы разработаем более мощные искусственные источники энергии или более производительные заводы (или полностью искусственные самовоспроизводящиеся фотосинтезирующие машины), тогда получится существенно ускорить процесс.
Я знаю, у нас получится. С таким количеством денег на кону марсианский гений не может проиграть. И подумайте вот о чем: развитие энергетики термоядерного синтеза на том уровне, которого требует ускорение процесса терраформирования, даст ключ еще и к технологии пилотируемых межзвездных полетов. И еще вот о чем: мы это делаем не только для собственного обогащения. Мы даем человечеству звезды.
«Ты зло Во благо обращаешь, и о том Свидетельствует новозданный мир, Второе Небо, что невдалеке От Врат Небесных, на глазах у нас, Ты сотворил, воздвиг и основал На чистом гиалине — на хрустальном Прозрачном океане. Создал Ты Простор, почти безмерный, полный звезд, — Миров, которые когда-нибудь Возможно, ты захочешь населить».
Джон Мильтон, «Потерянный рай»
«Да будет жизнь!»
Джон Мильтон, «Потерянный рай»