Счетные доски квантовых дотов
Однако сказанное, по большей части, представляет собой лишь мечты. Идея квантового компьютера блестяща, но реализовать ее весьма трудно, поскольку квантовые эффекты, теоретически облегчающие работу подобной машины, в то же время делают неимоверно сложным ее практическое воплощение. Пытаясь узнать результат вычислений, мы невольно вмешиваемся в процессы, происходящие на субатомарном уровне, и тогда результат меняется. Квантовый компьютер настолько чувствителен, что его работу нельзя контролировать. Он должен быть полностью изолирован от всего. Любое взаимодействие с окружающей средой может разрушить квантовое состояние, и тогда накопленная информация будет утрачена. Удастся ли нам приноровиться к подобным странностям квантового мира, обуздать их — покажет будущее.
Так, первый алгоритм решения задач с нечетко поставленными условиями был опубликован еще в 1996 году. Но для его применения нужны мощные машины. А их-то у нас нет!
Еще никто не знает, сколько атомов надо соединить, чтобы квантовый компьютер впрямь заработал. Все атомы нужно идеально изолировать от внешнего мира. Даже одна-единственная молекула газа моментально разрушит это хрупкое состояние. А ведь абсолютного вакуума не существует!
Поэтому ученые радуются, когда подобное «телепатическое» состояние удается удержать на миллионную долю секунды. Соответственно и возможности современных квантовых компьютеров пока невероятно малы. В лучшем случае они работают как квантовая… счетная доска.
Так, в декабре 2001 года Айзек Чуанг, сотрудник компании IBM, создал 7-кубитную машину, использовав в качестве вычислительных элементов пару капель раствора соединения железа (C11H5F5O2Fe). Отдельным кубитам соответствовали спины атомов фтора и углерода. Данная машина сумела определить, что делителями числа 15 являются числа 3 и 5 (пятнадцать — это минимальное число, для которого алгоритм Шора дает разумное решение). Это было тогда… самое сложное вычисление за всю историю квантовых компьютеров.
На первый взгляд, эксперимент не слишком эффектен, и все же он стал важным шагом на пути к созданию квантового компьютера. Возможности этого компьютера XXI века наглядно покажет следующий пример.
В одном из недавних экспериментов, чтобы разложить 158-значное число на простые множители, потребовалось несколько недель времени и сеть из 144 соединенных вместе компьютеров. А вот квантовый компьютер разложил бы подобное число на сомножители в течение считанных минут.
Эффективность квантовых компьютеров нарастает по экспоненте в зависимости от количества кубитов. Так, по своей мощности 50-кубитная машина эквивалентна кремниевому компьютеру с объемом памяти в 128 тысяч гигабайт; 20- или 30-кубитные машины соответствуют стандартному персональному компьютеру. Однако даже оптимисты не обещают, что подобные машины появятся в ближайшие два десятилетия.
Пока можно говорить лишь о том, как они будут схематично выглядеть. Так, в 2002 году в статье, опубликованной в «Nature», американский исследователь Дэвид Уайнлэнд из Национального института стандартов и технологий предложил модель большого квантового компьютера, состоящего из множества соединенных друг с другом ионных ловушек, в которых «заперты» ионы — носители информации. Его архитектура напоминает архитектуру традиционного компьютера. Оба располагают блоком памяти, где хранятся различные данные, и процессором, выполняющим математические операции.
В схеме Уайнлэнда все ионы поначалу находятся в блоке памяти, но при выполнении операций отдельные ионы вследствие мгновенного изменения магнитного поля попадают в вычислительное устройство, где их квантовое состояние меняется.
Чтобы в работе квантового компьютера не было сбоев, Уайнлэнд предложил использовать в качестве единичного носителя информации не отдельный ион, а ионную пару, поскольку ее квантовое состояние более устойчиво к действию внешних электромагнитных полей.
А если пойти другим путем?
Ядерно-спиновой квантовый компьютер может иметь дело с молекулами хлороформа. Они обладают целым спектром резонансных частот, которые можно использовать как кубиты. Какое-то время подобная идея казалась перспективной. Однако сейчас ученые убедились, что таким образом не удается накопить более шести кубитов кряду. Затем из-за декогерентности вся квантовая информация стирается.
Еще одно направление поисков: полупроводниковые кристаллы, покрытые тончайшими структурами, подобно современным микросхемам. При температурах, близких к абсолютному нулю, возникают так называемые квантовые доты — крохотные островки, улавливающие отдельные электроны. Ученые надеются, что эти группки, будучи связаны друг с другом, образуют сложнейшую информационную структуру.
Сегодня квантовый компьютер находится на самой ранней стадии развития. Если сопоставить его теперешние возможности с уровнем развития его конкурентов — кремниевых компьютеров, то можно сказать, что сейчас ученые колдуют над… своего рода «аналитической машиной Бэббиджа», то бишь пребывают в начале XIX века. Ведь результат, достигнутый ими, так мало отвечает истинным возможностям квантового компьютера. Тот же Чарлз Бэббидж прекрасно понимал, что он открыл и какими возможностями будет обладать его аналитическая машина — первая в мире ЦВМ, придуманная еще в 1833 году. Однако построить ее он не имел никаких шансов. Эта машина была не нужна обществу. На страницах журнала «Знание — сила» Юрий Ревич так описывал несвоевременность этого компьютера: «Еще не изобретены фотография и электрические генераторы, и в помине нет телефона и радио, только-только начали прокладывать первые железные дороги и телеграфные линии. На морях еще безраздельно господствует парус, а в передвижении по суше — друг человека, лошадь. А тут — ЦВМ!» Вот уж действительно Бэббидж опередил время!
Совсем не так обстоит дело с квантовым компьютером. Рано или поздно эта машина будет создана. Со временем — стоит ли сомневаться? — появятся квантовые компьютеры размером с пачку сигарет, чья мощь превзойдет ресурс всех компьютеров мира, вместе взятых.
Итак, «пределы роста» современной техники пока не видны. На пути к познанию ученые лишь «пересаживаются из одного транспорта в другой». В XX веке революцию в обществе совершил компьютер. На протяжении столетия мощность «вычислительной машины» возросла в миллиарды раз. В XXI веке с ней произойдут радикальные перемены. Ее потеснит новейшая, более мощная технология обработки информации, а привычный нам компьютер изрядно преобразится.
Больше книг — больше знаний!
Заберите 30% скидку новым пользователям на все книги Литрес с нашим промокодом
ПОЛУЧИТЬ СКИДКУ