Расчеты для терраформирования

We use cookies. Read the Privacy and Cookie Policy

Как я отметил, Марс купается в диоксиде углерода, главном парниковом газе, но большая его часть удерживается на полюсах в замороженном виде или заблокирована в реголите планеты. Оба источника углекислого газа помогут создать на Марсе парниковый эффект, но именно замороженный углекислый газ на полюсах поспособствует началу процесса.

Крис Маккей и я использовали в расчетах модели марсианского климата, чтобы установить, что небольшое, но устойчивое изменение температуры на южном полюсе Марса – всего 4 °C – может инициировать парниковый эффект в полярной области, который приведет к испарению ледяной шапки. (Для желающих вникнуть в тонкости расчетов я добавил в конце главы техническую заметку, которая детально описывает модель, используемую нами в качестве основы для этого разговора о терраформировании.) По мере испарения шапки температура и давление атмосферы будут расти, что, в свою очередь, приведет к высвобождению огромных количеств углекислого газа, запертых в реголите. Короче говоря, скромное повышение температуры на 4 °C на южном полюсе может глобально поднять температуру на десятки градусов и преобразовать атмосферу с давлением в 6 миллибар в такую, где давление измеряется в сотнях миллибар.

Повышения температуры южного полюса всего на 4 °C едва ли будет достаточно, чтобы запустить такие изменения планетарного масштаба. Но это все равно что вытащить всего одного яблоко из нижней части аккуратно сложенной пирамиды в продуктовом магазине. Кто-то долго и упорно работал, чтобы разложить эти яблоки в состоянии хрупкого равновесия. Для того чтобы его нарушить, много не нужно. Так же и с южной полярной шапкой Марса. Она в основном состоит из замороженного диоксида углерода – сухого льда. У диоксида углерода есть характеристика, известная как «давление насыщенного пара», которая означает способность вещества переходить в газообразное или парообразное состояние. На давление насыщенного пара какого-то вещества влияет только температура, и, если поднять ее, поднимется и давление насыщенного пара – вещество будет превращаться в пар или газ более энергично. Давление насыщенного пара двуокиси углерода при 147 °К составляет 6 миллибар – это современные условия на южном полюсе Марса. (Чтобы перевести температуру из градусов Кельвина в градусы Цельсия, необходимо вычесть из нее 273 °C. То есть 273 °К равны О °С или 32 °Е Температура южной полярной шапки Марса, 147 °К, равняется -126 °C или -195 °Е) Это состояние равновесия для полярной шапки. До тех пор пока температура полюса остается такой, давление диоксида углерода не поднимается выше 6 миллибар, потому что избыточный углекислый газ просто конденсируется из атмосферы и возвращается в замороженное состояние, форму сухого льда.

Что если мы теперь увеличим температуру на полюсе искусственно? Позже я подробно опишу, как сконцентрировать на нем солнечный свет с помощью больших орбитальных зеркал, но пока давайте просто договоримся, что мы начали искусственно нагревать полюс. Вследствие повышения температуры давление насыщенного пара двуокиси углерода начнет увеличиваться, поэтому больше углекислого газа будет испаряться из шапки в атмосферу. Давление насыщенного пара – способность вещества превратить в газ – и атмосферное давление – фактический вес атмосферы над поверхностью – два очень разных понятия, но можно сказать, что по мере роста давление насыщенного пара углекислого газа на полюсах глобальное атмосферное давление на Марсе будет расти как следствие закачивания диоксида углерода в атмосферу при испарении полярной шапки. Давление насыщенного пара двуокиси углерода при любой температуре – хорошо известная величина, ее можно посмотреть в химическом справочнике, и то, что справедливо для углекислого газа на Земле, будет работать и для него на Марсе. Как влияет объем газообразного диоксида углерода на создание парникового эффекта в атмосфере планеты, также известно, хотя и с меньшей точностью, так что мы можем оценить, насколько увеличится температура на Марсе в результате уплотнения ее атмосферы. Теперь, когда мы разобрались с основными понятиями, пора рискнуть и вникнуть в численные расчеты, которые показывают, как мы можем ускорить терраформирование Марса.

Для начала взглянем на рис. 9.1. На этом рисунке вы видите результаты моделирования, проведенного Маккеем и мной для ситуации с южной полярной шапкой Марса, где, по нашему мнению, может находиться достаточное количество замороженного углекислого газа, чтобы поднять атмосферное давление Марса до значений от 50 до 100 мбар. Я нанес на график полярную температуру как функцию атмосферного давления и давление насыщенного пара как функцию полярной температуры. Обратите внимание на две точки, А и В, где кривые пересекаются. Это точки равновесия, где среднее атмосферное давление Марса (Р – атмосферное давление над усредненной поверхностью Марса в миллибарах) и полярная температура (Т – в градусах Кельвина) приведены в виде двух взаимно согласованных кривых. Однако А – это устойчивое равновесие, в то время как В – неустойчивое. Это можно увидеть, исследуя динамику системы там, где кривые не совпадают. Всякий раз, когда температурная кривая лежит выше кривой давления насыщенного пара, система будет двигаться вправо, к повышению температуры и давления. Так возникает парниковый эффект. Когда температурная кривая лежит ниже кривой давления, система будет двигаться влево, к понижению температуры и давления. Это случай растущего «эффекта морозильной камеры». Современные условия на южном полюсе Марса соответствуют точке А с давлением 6 миллибар и температурой около 147 °К.

Рис. 9.1. Динамика полярной шапки и атмосферы Марса. Текущие равновесие обозначено точкой А. Повышение полярной температуры на 4°К будет сближать точки равновесия А и В, вызывая неизбежный нагрев, который приведет к таянию шапки

Рис. 9.2. Динамика марсианского реголита и атмосферы при условиях Td = 20 °К с запасом CO2 для реализации атмосферного давления в 500 мбар

Теперь рассмотрим, что произойдет, если искусственно повысить температуру на южном марсианском полюсе на несколько градусов. Вся кривая температуры будет двигаться вверх, заставляя точки А и В сближаться, пока они не встретятся. Если рост составит 4 °К, температурная кривая сместится достаточно высоко вверх на графике, чтобы везде оказаться выше кривой давления насыщенного пара. Результатом таких изменений будет парниковый эффект, который вызовет таяние всего полюса, возможно, меньше, чем за десятилетие. После того как давление и температура пройдут мимо точки В, Марс окажется в состоянии нарастающего парникового эффекта даже без искусственного подогрева, так что, если позже прекратить его, атмосфера будет оставаться на своем месте.

По мере испарения полярной шапки в игру вступает парниковый эффект, вызванный запасами углекислого газа в марсианском реголите. Эти резервы существуют главным образом в регионах на высоких широтах, и их одних может быть достаточно, чтобы увеличить атмосферное давление на Марсе до 400 мбар. Однако мы не сумеем получить из реголита весь запас диоксида углерода, потому что при нагреве реголит действует как «сухая губка», стремясь впитать углекислый газ обратно. К сожалению, тут мы сталкиваемся с самой крупной неизвестной на данный момент – количеством энергии или изменением температуры, которое требуется, чтобы высвободить двуокись углерода из марсианского реголита. Назовем эту неизвестную температурой десорбции (Td) и оценим ее в 20 °К, хотя позже мы будем менять ее значение, чтобы увидеть, где наша модель перестает действовать. Динамика атмосферы и реголита продемонстрирована на рис. 9.2. Рисунок показывает созданное за счет CO2 из реголита атмосферное давление на Марсе (обозначенное как «давление реголита») как функцию от температуры реголита, Тreg. (Тreg является средним арифметическим значением температуры реголита в различных областях планеты, взвешенным в соответствии с тем, сколько поглощенного газа он может удержать самостоятельно при собственной локальной температуре. Поскольку холодная почва удерживает больше CO2, Тreg близка к температуре вблизи околоарктических или околоантарктических районов Марса.) Рисунок также демонстрирует зависимость температуры реголита от давления двуокиси углерода в атмосфере. Чтобы получить эти кривые, я предположил, что при высвобождении всех доступных на текущий момент запасов углекислого газа из полярных областей атмосферное давление подскочило бы на 100 мбар, и высвобождение всех резервов двуокиси углерода из реголита повысило бы атмосферное давление на 394 мбар. Таким образом, предполагается, что вместе с уже имеющимся атмосферным давлением в 6 мбар в этом примере Марс имеет общее количество углекислого газа для поддержания атмосферного давления в 500 мбар.

Из рисунка 9.2 следует, что система атмосфера – реголит при Td, равном 20 °К, имеет только одну точку устойчивого равновесия (где обе кривые пересекаются). После того как полярная шапка исчезнет, глобальная температура и давление на Марсе сойдутся в этой точке. То есть к тому времени, когда процесс дойдет до полной остановки из-за истощения запасов углекислого газа в реголите и на полюсе, общее атмосферное давление будет составлять около 300 мбар, или 4,4 фунта на квадратный дюйм. На рисунке 9.2 показано, какой будет средняя суточная температура в тропических регионах Марса (Тmax) в летнее время, после того как плотность атмосферы увеличится. Обратите внимание, что кривая приближается к 273 °К, точке замерзания воды, или, что более важно с точки зрения терраформирования, точке таяния льда. Если прибавить к этому скромные дополнительные меры по созданию парникового эффекта, начнут таять водяной лед и вечная мерзлота.

Если предположить, что оценка температуры десорбции (Td) в 20 °К слишком оптимистична, положение точки равновесия сходимости (точка С на рис. 9.2) будет очень чувствительно к величине, которую мы выбираем. Рисунок 9.3 показывает, что произойдет, если значения температуры, необходимой для освобождения диоксида углерода из реголита, составят 25 и 30 °К. В этих случаях точка равновесия сходимости значительно смещается: от 300 миллибар при Td = 20 °К к 31 мбар при Td = 25 °К и к 16 мбар, если Td = 30 °К. Поначалу может показаться, что такая исключительная чувствительность последнего условия к неизвестной величине Td ставит под сомнение всю идею терраформирования. Однако на рис. 9.3 также показано (пунктирной линией), что произойдет, если мы используем искусственные методы создания парникового эффекта, чтобы поддержать температуру реголита (Тreg) на 10 °К выше значения, получаемого при самостоятельной дегазации диоксида углерода. Как упоминалось ранее, этого можно добиться, если закачать CFC промышленного производства в атмосферу. Как видите, это значительно улучшает итоговые показатели глобальной температуры и атмосферного давления, если предположить, что температура десорбции равна 25 или 30 °К. Кроме того, мы видим, что все три случая (Td равно 20, 25 или 30 °К) сходятся в конечных состояниях, где Марс обладает атмосферой с давлением в несколько сотен миллибар.

Рис. 9.3. Искусственное повышение температуры реголита на 10 °К может противодействовать эффекту изменения Td. Данные основаны на предположении, что планетарные запасы газообразного CO2 соответствуют атмосферному давлению в 500 мбар

В модели есть еще одна неизвестная, которую мы должны исследовать, хотя о ней мы кое-что знаем. Это фактическое количество имеющихся резервов углекислого газа, которые можно обнаружить на Марсе. Чем больше запасы, тем больше углекислого газа мы сумеем извлечь из реголита, и, следовательно, тем плотнее станет атмосфера Марса. Итак, мы должны задать вопросы, богаты или бедны марсианские запасы диоксида углерода и как ответ на предыдущий вопрос сказывается на нашей модели? В настоящий момент лучшее, что мы можем сделать, это рассмотреть оба варианта.

Чтобы понять, насколько обилие двуокиси углерода может повлиять на наши усилия по терраформированию, и как значение Td будет взаимодействовать с имеющимся количеством углекислого газа, обратитесь к рис. 9.4–9.7. На них можно увидеть окончательное атмосферное давление и точки равновесия максимальной сезонной средней температуры для тропиков Марса, основанные на варианте с бедными запасами диоксида углерода, которые позволяют создать атмосферное давление около 500 мбар (50 мбар углекислого газа в южной полярной шапке и 444 мбар в реголите), и с богатыми – которые позволяют создать давление около 1000 мбар углекислого газа (100 мбар в полярной шапке и 894 мбар в реголите). Помните, что повышение температуры реголита с помощью искусственных методов приводит к значительной разнице в конечном состоянии атмосферы при различных значениях температуры десорбции. То же верно и для рис. 9.4–9.7, где различные кривые соответствуют различным условиям: либо после того, как CO2 вытаял из полярной шапки, постоянный искусственный парниковый эффект уже не создается, либо же постоянно прилагаются усилия для поддержания средней температуры планеты на уровне 5, 10 или 20 °К выше величины, рассчитанной только для атмосферы из диоксида углерода. Например, как показано на рис. 9.5, даже при допущении, что температура десорбции равна 40 °К, искусственно поддерживаемая температура атмосферы в 20 °К приводит к скачку общей температуры более чем на 40 °К. Однако более важно, что если постоянно поддерживать среднюю температуру планеты на 20 °К выше значения, которое способны поддержать имеющиеся марсианские запасы двуокиси углерода, то атмосфера ощутимой толщины с приемлемым давлением может быть создана даже в том случае, когда температура десорбции имеет неутешительное значение в 40 °К.

Рис. 9.4. Равновесное давление, достигаемое на Марсе в предположении, что общие запасы газообразного CO2 будут соответствовать атмосферному давлению в 500 мбар, после того как 50 мбар CO2 выпарили из полярной шапки. DT – это искусственно поддерживаемый устойчивый рост температуры

Рис. 9.5. Равновесная максимальная сезонная температура (суточное среднее значение), достижимая на Марсе в предположении, что общие запасы газообразного CO2 будут соответствовать атмосферному давлению в 500 мбар, после того как 50 мбар CO2 выпарили из полярной шапки

Рис. 9.6. Равновесное давление, достигаемое на Марсе в предположении, что общие запасы газообразного CO2 будут соответствовать атмосферному давлению в 1000 мбар, после того как 100 мбар CO2 выпарили из полярной шапки. DT – это искусственно поддерживаемый устойчивый рост температуры

Рис. 9.7. Равновесная максимальная сезонная температура (суточное среднее значение), достижимая на Марсе в предположении, что общие запасы газообразного CO2 будут соответствовать атмосферному давлению в 1000 мбар, после того как 100 мбар CO2 выпарили из полярной шапки

Важный вывод, который можно сделать из этого анализа, заключается в том, что, хотя окончательные условия на Марсе после терраформирования могут быть весьма чувствительны к ныне неизвестному значению температуры, необходимой, чтобы освободить диоксид углерода из реголита, – Td, они даже более чувствительны к уровню постоянно поддерживаемого искусственного парникового эффекта. Проще говоря, конечные условия в системе атмосфера – реголит на Марсе после терраформирования можно контролировать. Повышая среднюю температуру планеты исключительно путем освобождения природных запасов углекислого газа, мы сможем преодолеть ограничения, налагаемые даже предельными значениями Td.