Биологическое решение

We use cookies. Read the Privacy and Cookie Policy

Мы потратим гораздо меньше усилий на создание парникового эффекта на Марсе, если обратимся к нашим биологическим помощникам. Такой подход к терраформированию отстаивал покойный Карл Саган, начиная с 1960-х годов, когда предположил, что Венеру можно было бы сделать более пригодной для жизни, если посеять в ее атмосферу водоросли, которые бы потребляли углекислый газ и тем самым уменьшали адский парниковый эффект на планете [49]. Идея, скорей всего, неработоспособная, но в поздних исследованиях Марса Саган и его коллега Джеймс Поллак выяснили, что существуют бактерии, которые могут потреблять азот и воду и производить аммиак [50]. В атмосфере Марса азот присутствует в незначительных количествах, но его богатые запасы могут обнаружиться в нитратных залежах реголита. Другие бактерии умеют соединять воду и углекислый газ в метан. И аммиак, и метан являются отличными парниковыми газами, в тысячи раз более мощными, чем двуокись углерода, хотя и не такими эффективными, как галогенуглеводороды. Если запустить парниковый эффект полярными зеркалами или производством CFC и тем самым обеспечить циркуляцию некоторого количества жидкой воды, мы, вероятно, сможем создать на поверхности планеты бактериальную экосистему, которая ускорит процесс благодаря выделению больших количеств аммиака и метана. В самом деле, если бы 1 % поверхности планеты был покрыт такими бактериями (а мы предполагаем, что они работают с эффективностью около 0,1 %, преобразуя энергию солнечного света в химические соединения), то ежегодно производилось бы около миллиарда тонн метана и аммиака. Этого достаточно, чтобы нагреть планету на 10 °К примерно за тридцать лет.

Таблица 9.2. Создание парникового эффекта на Марсе с помощью галогенуглеводородов (CFC)

Кроме того, аммиак и метан будут защищать поверхность планеты от солнечного ультрафиолетового излучения. Хотя в процессе аммиак и метан будут непрерывно разрушаться, так как типичная молекула имеет срок жизни в атмосфере в несколько десятилетий. Но бактерии постоянно будут их заменять. Также по мере нагревания планеты и дегазации диоксида углерода из реголита озоновый слой Марса будет утолщаться, обеспечивая дополнительное УФ-экранирование и для поверхности, и для аммиака и метана в атмосфере. (Углекислый газ способствует образованию озона. В самом деле, Марс в настоящее время имеет озоновый слой[32] толщиной около 1/60 толщины земного, что довольно хорошо, если считать, что толщина его атмосферы всего 1/120 от земной.)

В считаные десятилетия, используя комбинацию из этих подходов, можно преобразовать Марс из сухой ледяной пустыни в относительно теплую и слегка влажную планету, на которой мы сумеем поддерживать жизнь. Воздух преобразованного Марса не станет подходящим для дыхания, но людям больше не понадобятся скафандры, можно будет свободно передвигаться в обычной открытой одежде и простом дыхательном приспособлении типа акваланга. Кроме того, поскольку атмосферное давление удастся довести до приемлемого для людей уровня, можно будет строить для людей огромные жилые помещения под надувными куполами, содержащие пригодный для дыхания воздух. (Купола могут быть неограниченного размера, потому что они не будут страдать от перепада давления между их внутренней и внешней средой, как во время строительства базы.) С другой стороны, простые выносливые растения могут процветать за пределами жилых помещений в среде, богатой углекислым газом, и быстро распространиться по всей поверхности планеты. С течением веков эти растения будут внедрять кислород в марсианскую атмосферу в возрастающих количествах, пригодных для дыхания, и тем самым создавать приемлемые условия для более сложных растений и животных. Содержание диоксида углерода в атмосфере при этом станет уменьшаться, а планета – остывать, пока не будут введены парниковые газы, способные блокировать те участки инфракрасного спектра, которые ранее блокировал диоксид углерода. Рано или поздно настанет день, когда в куполообразных тентах не останется необходимости.