Информационные молекулы
В конце 1868 г. швейцарский врач Фридрих Мишер выделил из ядер лейкоцитов неизвестное вещество, которое назвал нуклеином. Примерно в те же годы Грегор Мендель тщетно старался убедить ученый мир в значении своей работы. До середины нашего столетия никто не предполагал, что эти два открытия столь тесно связаны между собой. Работа Менделя пребывала в забвении до 1901 г., а результаты исследований Мишера были опубликованы в подробном изложении лишь после его смерти — в 1890 г. Незадолго до этого, в 1889 г., немецкий химик Рихард Альтман предложил назвать нуклеин Мишера нуклеиновой кислотой.
Мишер сделал свое открытие в лаборатории известного исследователя Феликса Гоппе-Зейлера. Оно было настолько необычным, что этот ученый, не поверив Мишеру, поручил своим сотрудникам проверить его. Это задержало на два года публикацию статьи Мишера, озаглавленной «О химических свойствах клеток гноя», в которой он описывал свое открытие[26].
В 1879 г. в лаборатории Гоппе-Зейлера начал работать Альбрехт Коссель. В течение десяти последующих лет он выделил основные составные части нуклеина: содержащие азот вещества — аденин и гуанин, фосфорную кислоту и соединения из группы углеводов. Работы Косселя над нуклеиновыми кислотами явились одним из его достижений, за которые он был удостоен в 1910 г. Нобелевской премии по медицине и физиологии.
До 40-х годов исследование нуклеиновых кислот считалось весьма скучным и вообще бесперспективным занятием. Так продолжалось до 1944 г., когда Освальд Теодор Эйвери, Колин Мак-Леод и Маклин Мак-Карти установили, что дезоксирибонуклеиновая кислота (ДНК) является носителем генетической информации.
Это — одно из крупнейших открытий в современной биологии. Его история берет начало в 1928 г., когда Фредерик Гриффит в ходе своих опытов смешал невирулентные пневмококки с убитыми болезнетворными бактериями того же вида. Он заметил, что происходит какое-то взаимодействие, в результате которого живые микроорганизмы приобретают вирулентные свойства. В 1944 г. Эйвери с сотрудниками повторили этот эксперимент, используя чистую ДНК, — они обнаружили то же самое превращение. Это убедительно доказывало, что нуклеиновая кислота сохраняет и передает признаки вирулентности и вообще наследственные признаки.
Сообщение о том, что нуклеиновые кислоты выполняют столь важную функцию, сразу привлекло к себе внимание ученых. В 1948 г. исследованием нуклеиновых кислот занялся известный английский химик-органик Александер Тодд. В течение десяти лет подробно изучая первичную структуру нуклеиновых кислот, он выяснил, каким способом связываются четыре азотных основания — аденин, гуанин, цитозин, тимин (в РНК вместо тимина содержится урацил) — с пятиатомным кольцом сахара рибозы или дезоксирибозы и молекулой фосфорной кислоты. Комплекс из азотного основания (пуринового или пиримидинового), углевода (рибозы или дезоксирибозы) и остатка фосфорной кислоты называется нуклеотидом. Эти атомные соединения не только являются составной частью нуклеиновых кислот, но и входят в состав ферментов в качестве активных групп — коферментов. За свои исследования нуклеотидов А. Тодд был удостоен в 1957 г. Нобелевской премии по химии.
Еще в 1938 г. Уильям Астбери, автор термина «молекулярная биология», получил со своим сотрудником Флорином Беллом рентгенограммы ДНК и установил, что азотные основания в этой длинной молекуле должны располагаться, как пластинки, одно над другим. Через 10 лет Эрвин Чаргафф сформулировал знаменитые «правила Чаргаффа» — общее количество гуанина и аденина из группы пуринов в молекуле ДНК равно количеству цитозина и тимина из группы пиримидинов. Указанные два типа соединений различаются по форме и размеру своих кольцевидных структур. Эти данные имели очень большое значение для работ, которые проводили в Кавендишской лаборатории Кембриджского университета Фрэнсис Харри Комптон Крик и Джеймс Дьюи Уотсон.
В мае 1951 г. Уотсон, молодой исследователь и ученик Сальвадора Эдуарда Лурии, встретившись в Копенгагене с Морисом Уилкинсом из Лондонского университета, ознакомился с его рентгенограммой кристаллов ДНК. Уотсона это очень заинтересовало, и по его просьбе Лурия договорился о его работе у Джона Кендрю в Кавендишской лаборатории. В то время М.Ф. Перуц, Дж. К. Кендрю и многие другие ученые занимались рентгеноструктурным анализом сложных биомолекул, используя методы Дж. Бернала и Д. Кроуфут-Ходжкин и проводя расчеты с. помощью первых, еще несовершенных ЭВМ. В Кембридже Уотсон познакомился, с Фрэнсисом Криком; они быстро нашли общий язык и поставили перед собой сложную задачу — определить структуру ДНК. В 1952 г. этим вопросом занимались в. Лондонском университете Розалинд Франклин и Морис Уилкинс. Они получили довольно хорошие рентгенограммы, но не знали точно, как их интерпретировать. Этот вопрос пытались, разрешить многие исследователи, в том числе и известный Лайнус Карл Полинг, — но без особого успеха.
История открытия структуры ДНК описана Уотсоном в его замечательной книге «Двойная спираль», изданной в 1968 г. В ней он вспоминает о целом ряде счастливых обстоятельств, которые помогли ему и Крику первыми разгадать структуру ДНК. Одно из таких обстоятельств—общение со специалистами, из других областей науки. В разговорах с химиками. Уотсон узнал, что структурные формулы, которыми пользовались они с Криком и их «конкуренты» в Лондоне, весьма схематичны и вряд ли: отвечают истине. Поняв подлинное строение пуринов и пиримидинов, Уотсон и Крик установили, что они тесно связаны между собой, и если, принять, что молекула ДНК состоит из двух цепей, то можно хорошо объяснить и правила Чаргаффа. Цепи должны быть закрученными одна вокруг другой, так чтобы сохранялись углы между различными группами атомов; таким образом и появилась на свет структура знаменитой двойной спирали, в которой связанные между собой пурины и пиримидины создают систему, напоминающую ступеньки лестницы.
Уже в первом своем сообщении в 1953 г. Крик и Уотсон отметили, что структура двойной спирали ДНК очень хорошо объясняет процесс «размножения» этой молекулы. Когда две цепи ее разъединяются, к ним могут прикрепляться новые нуклеотиды, и около каждой из старых цепей образуется новая, точно ей соответствующая. Это было поистине замечательное открытие. Впервые была найдена структура, которая могла самовоспроизводиться и, таким образом, осуществлять основную жизненную функцию. Великолепные результаты Уотсона и Крика были бы невозможны без точных рентгенограмм Р. Франклин и М. Уилкинса. Ученые, открывшие знаменитую двойную спираль ДНК, в которой содержится генетическая информация о жизни, стали в 1962 г. лауреатами Нобелевской премии. Физики Крик и Уилкинс и биохимик Уотсон получили премию по физиологии и медицине за открытие структуры нуклеиновых кислот и ее роли в переносе информации в живом веществе. К сожалению, Франклин не оказалась в числе лауреатов — она умерла в 1957 г.
Наряду с химическими и физическими исследованиями нуклеиновых кислот в 40—50-е годы ставились опыты, целью которых было выяснение механизма их биосинтеза. В 1946 г. в Нью-Йоркском университете встретились Северо Очоа, баск из Испании, и Артур Корнберг из Нью-Йорка, с тех пор началось их длительное и плодотворное сотрудничество. Очоа работал с РНК бактерий, вызывающих уксуснокислую ферментацию, и Корнберг — с ДНК известной бактерией коли, обитающей в пищеварительном тракте человека. Ученым удалось обнаружить ферменты, которые синтезируют длинные цепи этих биополимеров — ДНК и РНК: достаточно было поместить в подходящую среду четыре основных нуклеотида и добавить фермент полимер азу. Необходимо также еще и небольшое количество готовой нуклеиновой кислоты. В этих условиях начинался синтез ДНК или РНК «ин витро» — в пробирке.
Результаты оказались весьма впечатляющими: впервые нуклеиновая кислота была синтезирована вне живой клетки. Сам Корнберг сравнивал это достижение с открытием Бухнером внеклеточного брожения. Еще одна функция живого вещества была выведена из клетки, и стало возможным изучать ее в лабораторных условиях. За открытие механизмов биосинтеза РНК и ДНК С. Очоа и А. Корнбергу была присуждена в 1959 г. Нобелевская премия по физиологии и медицине.
Еще в 40-х годах биохимикам было ясно, что последовательность нуклеотидов определяет систему расположения аминокислот в белковой молекуле. Все белки построены из полипептидных цепей, которые включают 20 аминокислот. В ДНК, однако, только 4 нуклеотида. Очевидно, эти 20 аминокислот представляются какими-то различными комбинациями нуклеотидов. Этим вопросом занялся известный физик Г.А. Гамов. Он показал, что при сочетании четырех нуклеотидов тройками получаются 64 различные комбинации, чего вполне достаточно для кодирования любых белков. Идея выглядела привлекательной, но в 1954 г., когда Гамов опубликовал свою работу, было совершенно неясно, как ее можно доказать. В 1958 г. Эдуард Тейтем в своей Нобелевской лекции выразил надежду, что кто-нибудь из более молодых слушателей доживет до расшифровки генетического кода. Но реальность нередко опережает мечты: это произошло уже в 1961 г.
В этом году Маршалл Уоррен Ниренберг и Генрих Маттеи искусственно синтезировали РНК, состоящую только из одного нуклеотида. С ее участием они осуществили внеклеточный синтез белковой молекулы и получили полипептид лишь из одной аминокислоты. Оказалось, например, что РНК, построенная из урацила и содержащая, естественно, лишь триплет УУУ, кодирует синтез полипептида, состоящего только из аминокислоты — фенилаланина. Так этот удивительно простой и остроумный метод положил начало расшифровке генетического кода. В данной работе принимали участие Северо Очоа и индийский ученый Хар Гобинд Корана, ученик Владимира Прелога из Цюриха и Александера Тодда из Кембриджа.
Большой заслугой Кораны явилась разработка методов синтеза различных молекул ДНК и РНК с определенной последовательностью кодирующих триплетов. Искусственное синтезирование нуклеиновых кислот позволило к. 1966 г. раскрыть значение всех 64 комбинаций. Оказалось, что некоторые аминокислоты кодируются несколькими триплетами. В разных организмах используются различные триплеты, или, как говорят биохимики, ДНК пользуется различными «диалектами». Только три кодона (триплета) оказались бессмысленными: они не кодируют аминокислоту, но зато играют роль «знаков препинания». Когда процесс записи информации доходит до такого «бессмысленного» кодона, синтез белка прекращается.
После раскрытия генетического кода, когда стало ясно, как записывается наследственная информация, остался неразрешенным вопрос о «переводе» этой информации с языка ДИК на язык белков. Этой проблемой занялся Роберт Уильям Холли, ученик Винсента дю Виньо из Корнеллского университета.
Еще в начале 40-х годов Торбьёрн Касперсон в Швеции и Жан Браше в Бельгии установили, что в тканях, где идет активный синтез белков, наблюдается повышенное содержание РНК. В 50-е годы некоторые ученые, исследуя этот вопрос, открыли рибонуклеиновые кислоты, молекулы которых имеют сравнительно небольшие массы и размеры. В 1957 г. Фрэнсис Крик разработал теорию, согласно которой на нуклеиновой матрице должны выстраиваться по определенной системе какие-то вещества, которые и переносят аминокислоты в белковую молекулу. Так возникла гипотеза транспортной РНК.
Теория исходила из необходимости наличия 20 различных транспортных РНК, соответствующих 20 аминокислотам. Р. Холли поставил перед собой задачу — исследовать одну из них. С помощью специальных ферментов (рибонуклеаз) он разделял молекулу РНК на небольшие фрагменты и определял их нуклеотидную последовательность. Используя различные ферменты, Холли синтезировал все более крупные фрагменты и к 1965 г. определил структуру транспортной РНК, переносящей аланин в клетках дрожжей.
Метод Холли был сразу же взят на вооружение учеными, и вскоре удалось раскрыть структуры других транспортных рибонуклеиновых кислот. Оказалось, что молекула этих веществ имеет на одном конце триплет нуклеотидов (антикодон), который точно отвечает триплету матрицы. Так, транспортные РНК встречаются по определенной системе на длинной молекуле информационной РНК, являющейся копией соответствующего гена из молекулы ДНК. Транспортные РНК несут на своем хвосте различные аминокислоты, которые также упорядочиваются по определенной системе и с помощью ферментов соединяются в цепь. Этот процесс осуществляется в рибосомах — клеточных «фабриках» по производству белковых молекул.
Обширные и глубокие исследования Ниренберта, Кораны и Холли внесли ясность в вопрос о способе записи и использования генетической информации. В 1968 г. эти трое ученых были удостоены Нобелевской премии по физиологии и медицине за интерпретацию генетического кода и его функций в синтезе белка.
Совершенствуя свои методы синтеза полинуклеотидных цепей, Корана сумел получить в 1970 г. первый искусственный ген (триплет). Это сыграло важную роль в зарождении генной инженерии. Синтезирование стало возможным лишь после того, как была определена последовательность нуклеотидов в гене. Эта сложнейшая задача в исследовании нуклеиновых кислот нашла свое решение лишь в последнее время.
Больше книг — больше знаний!
Заберите 30% скидку новым пользователям на все книги Литрес с нашим промокодом
ПОЛУЧИТЬ СКИДКУ