XIII. ФИЗИОЛОГИЯ
В первые годы после основания Нобелевского фонда одно имя часто называлось в списках кандидатов в лауреаты, подготавливаемых Каролинским институтом, — Иван Петрович Павлов, профессор Института экспериментальной медицины в Петербурге. Выдающийся русский ученый приобрел широкую известность благодаря своим новаторским исследованиям в физиологии.
Считается, что работы Павлова открыли новую эру в развитии этой науки. Его основным методом был так называемый хронический эксперимент. Цель его опытов — путем минимального вмешательства в деятельность организма высших животных исследовать функции различных органов и систем. Павлов разработал и усовершенствовал методы хирургических операций, посредством которых производилось наложение фистул на пищеварительные железы. Подопытные животные после операции долго сохраняли свою жизнеспособность, что позволяло всесторонне исследовать физиологию их пищеварительной системы. Это было исключительно важно, так как до работ Павлова было мало что известно о процессах пищеварения.
Разнообразные методы исследования, применяемые сотрудниками Павлова, способствовали быстрому получению данных относительно работы органов пищеварения. Искусственные отводы от слюнных желез, желудка и других органов системы пищеварения дали возможность исследовать секрецию желудочного сока и проводить его химический анализ. Наряду с этим были изучены моторные функции и нервная регуляция пищеварительной системы. Это было новое слово в физиологии, поскольку прежде большинство ученых и не предполагали, что нервная система играет какую-то роль в процессах пищеварения. Развивая в дальнейшем это направление, Павлов сделал крупный вклад в нейрофизиологию.
Располагая столь надежным и испытанным методом, Павлов и его сотрудники собрали огромное количество данных о зависимости процесса пищеварения от действия органов чувств и состояния нервной системы животных, от качества пищи и многих других факторов. Сотрудники Института экспериментальной медицины публиковали многочисленные научные сообщения и статьи, которые, несмотря на языковый барьер, становились известными во всем мире. Сам Павлов, направлявший работу всех своих сотрудников, редко фигурировал как соавтор в их публикациях. Это побудило Каролинский институт направить профессора Карла Тигерстеда в Петербург, чтобы выяснить, кто возглавляет столь плодотворную научную деятельность целого коллектива. Это позволило оценить роль И.П. Павлова, и в 1904 г. он был удостоен Нобелевской премии по физиологии и медицине за работы по физиологии пищеварения.
Ученому исполнилось в ту пору 55 лет, и он был в расцвете творческих сил. Свою плодотворную работу Павлов продолжал еще три десятилетия, сосредоточив теперь основное внимание на физиологии высшей нервной деятельности. Им была создана целая научная школа, и его институт в окрестностях Ленинграда стал одним из крупнейших в мире центров исследований в области физиологии. За большие успехи в нейрофизиологии Павлова в 20-е годы вновь выдвигали на Нобелевскую премию, и, хотя его кандидатура на сей раз не прошла, сам этот факт свидетельствует о его высоком авторитете как ученого.
В начале нынешнего столетия датский физиолог Август Крог из Копенгагенского университета занялся изучением процессов газообмена в тканях. Эта область была чрезвычайно трудна для исследования, так как возможности прямых измерений здесь весьма ограниченны. Крог разработал косвенные методы исследования диффузии кислорода и получил совершенно неожиданный результат: даже при очень тяжелой физической нагрузке содержание газа в мышцах оказалось почти таким же, как в капиллярах. Это было удивительным, поскольку предполагалось, что содержание кислорода в мышцах в данном случае должно уменьшаться, чтобы возрастала скорость диффузии. Датский ученый показал, что это достигается с помощью другого механизма.
Крог решил исследовать непосредственно капилляры, воспользовавшись для этого микроскопом. Он обнаружил, что при сокращении мышцы и действии различных раздражителей число капилляров растет, между ними возникают новые связи, сеть капилляров становится гуще. Это приводит к увеличению площади диффузии и расширяет возможности для проникновения кислорода в клетки. Подобную картину наблюдали и другие исследователи, однако до Крога никому не приходило в голову объяснить подобным образом пульсацию капилляров. Такой подход позволил Крогу объяснить количественные данные по газообмену в организме. Увеличение числа капилляров приводит, не ускоряя движения крови, к увеличению количества циркулирующей в организме крови, которая переносит кислород и питательные вещества. Увеличение скорости кровотока повлекло бы за собой сокращение времени диффузии, и тогда кровь не выполняла бы своих функций.
За исследования физиологии капиллярного кровообращения Август Крог был удостоен в 1920 г. Нобелевской премии по физиологии и медицине.
Одним из интереснейших изобретений известного французского физика Габриеля Липмана был капиллярный электрометр. В 1887 г. Август Уоллер с помощью такого прибора записал первую электрокардиограмму. Эти исследования привлекли внимание голландского физиолога Виллема Эйнтховена из Лейденского университета. Он начал эксперименты с капиллярным электрометром и вскоре выявил его недостатки и ограниченные возможности. Оказалось, что аппарат имеет значительную инерцию, и снятая им электрокардиограмма не дает подлинной картины импульсов, возникающих в проводящих пучках сосудов сердца. Эйнтховен разработал математические методы коррекции результатов, применил метод фоторегистрации, развил теорию электрокардиографии и таким образом в 90-е годы добился получения электрокардиограмм высокого качества. В 1895 г. он расчленил регистрируемые сигналы на составные части, связав их с различными моментами в деятельности сердца. Эта номенклатура сохранилась до настоящего времени.
Однако, несмотря на все усовершенствования, метод оставался очень сложным. Тогда Эйнтховен предложил в 1903 г. радикальное решение — струнный гальванометр, с помощью которого можно было регистрировать малые и быстрые изменения электрических потенциалов. Этот прибор — дальнейшее усовершенствование аналогичной конструкции, созданной Жаком Арсеном Д’Арсонвалем. Со струнного гальванометра начинается современная электрокардиография.
Еще в 1887 г. Уоллер показал, что при записи электрокардиограммы важно выбрать точки тела, от которых отводятся импульсы. Основываясь на результатах своих экспериментов, Эйнтховен предложил три точки отведения электрокардиограммы — от обеих рук и левой ноги, соединяя эти три точки попарно. С помощью многоканальных электрокардиографов запись сигналов можно делать одновременно. Эти принципы сохранились и по сей день.
Но деятельность Эйнтховена не ограничивалась только разработкой технических приспособлений. Как медик он пытался объяснять наблюдаемые явления с точки зрения биологии. Первое его открытие состояло в том, что каждый человек имеет свою специфическую электрокардиограмму, но у кардиограмм есть и общие черты. В 1906 г. он обнаружил, что при различных сердечных заболеваниях наблюдаются характерные отклонения в электрокардиограммах, что делает их исключительно ценными для диагностики. Эйнтховен установил, что суммирование электрофизиологической активности особых проводящих пучков создает в сердце биотоки, которые несут информацию о его деятельности.
Когда работа голландского ученого привлекла внимание Каролинского института, встал вопрос, возможно ли присуждение премии по физиологии и медицине за создание прибора. Подобных прецедентов еще не было, поэтому, когда Нобелевский комитет решил в 1924 г. наградить Эйнтховена, акцент мотивировки премии был смещен на открытие метода электрокардиографии. Но созданный Эйнтховеном струнный гальванометр и поныне используется для калибровки современных электрокардиографических аппаратов.
Однако, несмотря на все свои достоинства, электрокардиография является дистанционным методом наблюдения. До определенного времени никому и в голову не приходило, что сердце живого человека можно исследовать каким-то другим способом, кроме прослушивания, записи биотоков или рентгенографии. Так продолжалось до 1929 г., когда молодой хирург Вернер Форсман из клиники в Эберсвальде со свойственным молодости бесстрашием поставил на себе невероятный эксперимент»
Он ввел катетер в вену одной из рук на глубину 65 см, после чего отправился в. рентгеновский кабинет, чтобы, проверить, достиг ли конец катетера правого предсердия.
Этот эксперимент вызвал, резкое осуждение в медицинских кругах. Сам по себе, этот опыт не столь опасен, но мысль о подобном, вмешательстве в организм, живого человека приводила медиков, в ужас Руководство больницы запретило Ферсману ставить подобные, эксперименты. Его метод, однако, в 1940 г., применили, два нью-йоркских врача. Дикинсон Ричардс и Андре Фредерик Курнан в течение нескольких лет занимались изучением, кровообращения при различных, заболеваниях, и, поняв ограниченные возможности, традиционных, методов, решили прибегнуть к методу Форсмана, несмотря на его рискованность.
К, счастью, опасения, оказались напрасными. Катетер позволял, непосредственна измерять давление и определять состав крови в, труднодоступных, участках, прилежащих к сердцу, и в самом, сердце. Для клиницистов это имело, исключительное значение. В 1941 г. Ричардс и Курнан опубликовали результаты, своих, исследований. Эти результаты, полученные в крупной клинике известными учеными, естественно, привлекли внимание, всей медицинской общественности, чего не. удалось добиться молодому врачу из Эберсвальда. Катетеризация, сердца начала все более широко входить в медицинскую практику.
Во время второй мировой, войны хирургам также пришлось включиться в борьбу. Ричардс и Курнан исследовали, так называемый, вторичный шок у людей, получивших тяжелые ранения. Оказалось, что большая потеря, крови ведет к. нарушениям: в кровообращении, и к шоку с летальным, исходом. Использование катетеров позволило, детально, исследовать это. состояние и. найти способы, его предотвращения. Впоследствии таким, методом исследовались врожденные пороки сердца, что помогло, значительно улучшить диагностику и, следовательно, повысить, результативность хирургического, вмешательства.
На успехи, сердечной, хирургии в 1956 г. обратил свое внимание Каролинский институт. Через 27 лет после своего замечательного эксперимента. В. Форсман был. назван, в числе исследователей, внесших крупный вклад в медицину. Вместе с ним Нобелевской премии по физиологии и медицине были удостоены Д. Ричардс и А. Курнан. Все трое получили награду за открытия, связанные с катетеризацией сердца и исследованием патологических изменений в кровеносной системе.
Исследования систем дыхания и кровообращения поставили вопрос о регуляции этих функций в организме. Еще в середине прошлого века было известно, что внутренние стенки аорты и сонной артерии имеют барорецепторы, контролирующие кровяное давление и посылающие сигналы в мозг, откуда при необходимости идут команды для его коррекции. В 1927 г. бельгийский ученый Корней Хейманс установил, что в тех же местах находятся и геморецепторы, регулирующие химический состав крови.
Добиться успеха в этих исследованиях помог оригинальный метод, разработанный отцом Хейманса, ректором Гентского университета. В 1912 г. он вместе с Э. де Соммером провел исследования нервной регуляции дыхания на двух собаках. Кровеносные сосуды одной собаки были соединены с кровеносными сосудами другой, в результате чего у них возникало общее кровообращение. У одной собаки прерывалась связь мозга с телом и функционировали только отдельные нервы. Это давало возможность проследить, какими путями идут в мозг сигналы об изменении дыхания и состава крови.
После длительных исследований, расширенных и углубленных молодым Хеймансом, выяснилось, что в аорте (в непосредственной близости от сердца) имеются специальные тельца, которые реагируют на химический состав крови и посылают в мозг сигналы о необходимости регуляции дыхания.
Указанный метод позволил исследовать различные физиологические процессы, например рефлексы дыхания и кровообращения, действие различных гормонов. К. Хейманс усовершенствовал и углубил метод. Эти исследования сделали его одним из крупнейших физиологов первой половины нашего столетия. Важное открытие было связано с хеморецепторами — «вкусовыми» органами, посредством которых мозг поддерживает дыхательное равновесие в организме. В 1939 г. коллегия профессоров Каролинского института приняла решение присудить К. Хеймансу Нобелевскую премию по физиологии и медицине. Премия была дана за открытие роли синусного и аортального механизмов в регуляции кровообращения. В то время в Европе уже началась вторая мировая война, и премия была вручена К. Хеймансу в Гейте. Лишь в 1945 г. он прочел в Стокгольме свою Нобелевскую лекцию, где подробно рассказал о своих знаменитых опытах со «спаренными» собаками.
Больше книг — больше знаний!
Заберите 30% скидку новым пользователям на все книги Литрес с нашим промокодом
ПОЛУЧИТЬ СКИДКУ