Метод приумножения
Последний метод выбора мотивации в нашем списке — приумножение. В его основе лежит следующая идея: вместо того чтобы формировать с чистого листа систему мотивации у ИИ, мы обращаемся к интеллектуальному агенту с уже сложившимися и подходящими нам мотивами поведения. Затем мы расширим когнитивные способности агента до уровня сверхразумных. Если все пойдет хорошо, то метод даст нам сверхразум с приемлемой системой мотивации.
Очевидно, что такой подход нельзя применять в случае создания зародыша ИИ. Но приумножение вполне реально использовать, когда к сверхразумному уровню идут другими путями: при помощи полной эмуляции головного мозга, биологического улучшения интеллектуальных способностей, создания нейрокомпьютерного интерфейса или развития сетей и организаций — когда есть возможность построить систему на основе нормативного ядра (обычных людей), которое уже содержит представление о человеческих ценностях.
Привлекательность метода приумножения может расти прямо пропорционально нашему разочарованию в других подходах к решению проблемы контроля. Создание системы мотивации для зародыша ИИ, которая осталась бы относительно надежной и приносила бы пользу в результате рекурсивного самосовершенствования даже после того, как ИИ превратится в зрелый сверхразум, — дело крайне сложное, особенно если нужно получить верное решение с первой попытки. В случае приумножения мы могли бы как минимум начать с агента, который уже имеет знакомую и схожую с человеческой систему мотивации.
Однако трудно обеспечить сохранность такой сложной, развитой, не идеальной и плохо понимаемой нами самими системы мотивации, такой как человеческая, после взлета ее когнитивного ракетоносителя в стратосферу. Мы уже обсуждали, что в результате несовершенной эмуляции мозга может сохраниться функционирование его интеллекта, но будут утеряны некоторые черты личности. То же самое (хотя, возможно, и в меньшей степени) верно в случае биологического улучшения интеллектуальных способностей, способного в какой-то мере затронуть мотивацию, а также для коллективного улучшения сетей и организаций — фактора, серьезно меняющего социальную динамику (например, будет пересмотрено отношение или к внешним, или внутренним субъектам). Если сверхразум возник в результате движения по одному из этих путей, организатор проекта может столкнуться с тем, что конечная мотивация зрелой системы окажется для него недоступной. Благодаря изяществу и математически четкой определенности архитектуры ИИ — при всей ее неантропоморфной инаковости — она гораздо прозрачнее, несмотря на то что важные аспекты ее функционирования не поддаются формальной проверке.
В конечном счете, сколько бы мы ни подсчитывали преимущества и недостатки метода приумножения, сколько бы ни размышляли, полагаться на него или нет, — выбора у нас, пожалуй, не остается. Если сверхразум получен в результате создания ИИ, использовать метод приумножения нельзя. И напротив, если удалось выйти на уровень сверхразума, двигаясь по иному пути, многие методы выбора мотивации оказываются неприемлемыми. Но даже с учетом всего вышесказанного вопрос о вероятной эффективности применения метода приумножения имеет стратегическое значение, если благодаря ему у нас появляется возможность повлиять на выбор технологии, с помощью которой удастся впервые получить сверхразум.
Больше книг — больше знаний!
Заберите 20% скидку на все книги Литрес с нашим промокодом
ПОЛУЧИТЬ СКИДКУ