Метод приручения
Поставим перед ИИ конечную цель, отвечающую условиям метода точной спецификации полнее всех примеров, приведенных выше, — стремление к самоограничению. Мы не в состоянии описать, какой окажется общая модель поведения сверхразума в реальном мире, — в противном случае нам пришлось бы перечислять, а заодно и объяснять, все плюсы и минусы любой ситуации, которая могла бы возникнуть в будущем. Поэтому было бы разумнее дать подробное описание единственной конкретной ситуации и тщательно проанализировать, как, столкнувшись с ней, поведет себя сверхразум. Иначе говоря, нам следует найти подходящий мотив заинтересовать интеллектуальную систему ограничиться одним не слишком значимым и небольшого масштаба событием и стремиться действовать исключительно в соответствии с поставленными условиями. В результате ИИ добровольно загонит себя в тесные рамки незначительных конечных целей, а тем самым сознательно сузит сферу своей деятельности и умерит честолюбивые замыслы. Поскольку метод явно рассчитан на то, чтобы сделать систему послушной нашей воле, — назовем его приручением ИИ.
Например, можно попробовать создать ИИ, который функционировал бы как устройство с вопросно-ответной системой, то есть выступал бы в роли «оракула» (термин, который мы введем в следующей главе). Однако было бы небезопасно наделять ИИ подобной конечной целью: выдавать максимально точные ответы на любой заданный вопрос — вспомним описанный в восьмой главе сюжет «Гипотеза Римана и последующая катастрофа». (Правда, такая цель стимулировала бы ИИ предпринимать действия, гарантирующие ему, что вопросы будут простыми.) Нам понадобится преодолеть эти трудности. Поэтому следует очень внимательно отнестись к самой процедуре приручения ИИ и попытаться корректно определить конечную цель, стимулируя ИИ проявлять добрую волю отвечать на вопросы безошибочно и сводить к минимуму свое воздействие на мир. Правда, последнее не имеет отношения к тем случаям, когда формулировка вопросов невольно вынуждает ИИ давать ответы, оказывающие влияние на окружающих, но все равно эти ответы обязаны быть абсолютно достоверными, а форма их изложения не должна манипулировать сознанием людей[374].
Мы видели, насколько неудобно пользоваться точной спецификацией, когда речь идет об амбициозной конечной цели — к тому же отягощенной сложной системой правил, которые предписывают ИИ, как ему действовать в практически открытом множестве ситуаций. Было бы намного полезнее применять метод точной спецификации для столь узкой задачи, как приручение ИИ. Но даже в этом случае остается масса проблем. Следует проявлять большую осторожность, составляя определение системы поведения ИИ. Например, как он собирается «сводить к минимуму свое воздействие на мир»? Необходимо убедиться, что он будет соблюдать все условия и его критерии не отличаются от наших стандартов. Неправильно выбранная им величина степени воздействия может привести к плачевным результатам. Существуют и другие опасности, связанные с созданием системы «оракул», но их мы обсудим позже.
Метод приручения ИИ естественным образом перекликается с методом его изоляции. Предположим, мы блокировали ИИ таким образом, что он не в состоянии вырваться на свободу, но есть смысл попытаться сформировать у него такую систему мотивации, что даже когда появится возможность побега, у ИИ не возникнет желания покидать свою «песочницу». Правда, если одновременно с этими мерами подключить «растяжки» и множество других предохранительных устройств, шансы на успех приручения резко упадут[375].
Больше книг — больше знаний!
Заберите 20% скидку на все книги Литрес с нашим промокодом
ПОЛУЧИТЬ СКИДКУ