ИИ-инструменты

We use cookies. Read the Privacy and Cookie Policy

В свое время было высказано предложение создавать сверхразум скорее в качестве инструмента, чем агента[387]. Идея возникла неслучайно, и связана она с простым соображением: обычным программным обеспечением пользуются все подряд, и ни у кого не возникает никакого чувства опасности, даже отдаленно напоминающего ту тревогу, которую вызывают у нас проблемы, обсуждаемые в этой книге. Почему бы не создать ИИ, похожий на обычное ПО, — вроде системы управления полетом или виртуального помощника, — только более гибкое и универсальное? Зачем нужен сверхразум, обладающий собственной волей? Те, кто придерживается такой точки зрения, считают, что сама парадигма агента фундаментально ошибочна. Вместо ИИ, который, подобно человеку, думает, желает и действует, нам следует ориентироваться на написание ПО, делающее лишь то, для чего оно предназначено.

Однако идея создания ПО, которое «делает лишь то, для чего предназначено», не так легко осуществима, поскольку речь идет о продукте с очень мощным интеллектом. В каком-то смысле все программы делают то, на что они запрограммированы: их поведение математически определяется исходным кодом. Но это утверждение так же верно и для ИИ, принадлежащего какой-то из трех каст. Если делать лишь то, для чего предназначено означает «вести себя так, как предполагали программисты», то стандартное ПО довольно часто нарушает этот стандарт.

Благодаря ограниченным возможностям современного ПО (по сравнению с ИИ) с последствиями его отказов пока можно справиться — они будут оцениваться где-то между значением «несущественный» и «дорогостоящий», но никогда не поднимутся до уровня экзистенциальной угрозы[388] Однако если относительно безопасными стандартные современные ПО делает не высокая надежность, а ограниченные возможности, то непонятно, как они могут стать образцом для создания безопасного сверхразума. Может быть, потребность в УИИ можно удовлетворить за счет расширения диапазона задач, решаемых обычным ПО? Но диапазон и разнообразие задач, которые ИИ успешно решил бы в современных условиях, огромен. Вряд ли для их решения возможно создать ПО специального назначения. Но даже если это и можно сделать, такой проект занял бы слишком много времени. Еще до его завершения обязательно изменится сущность самого задания, поскольку одни проблемы утратят свою злободневность, а другие, пока еще невыявленные, станут актуальными. Наличие программы, которая может самостоятельно учиться решать новые задачи и, более того, формулировать их, а не только справляться с чужими формулировками, дало бы нам огромные преимущества. Но тогда нужно, чтобы программа имела возможность учиться, мыслить и планировать, причем делать это на высоком уровне и не ограничиваться одной или несколькими областями знаний. Иными словами, нужно, чтобы она обладала общим уровнем интеллекта.

В нашем случае особенно важна задача разработки самого ПО. С практической точки зрения огромный выигрыш дала бы автоматизация этого процесса. Хотя такой же критически важной является и способность к быстрому самосовершенствованию, ведь именно она позволяет зародышу ИИ обеспечить взрывное развитие интеллекта.

Если наличие общего уровня интеллекта не является обязательным, существуют ли иные способы реализовать идею ИИ-инструмента так, чтобы он не вырвался за рамки пассивного «решателя» задач? Возможен ли ИИ, не являющийся агентом? Интуиция подсказывает, что безопасным обычное ПО делает не ограниченность его возможностей, а отсутствие амбиций. В Excel нет подпрограмм, тайно мечтающих завоевать мир, будь у них соответствующие возможности. Электронные таблицы вообще ничего не «хотят», они всего лишь слепо выполняют команды, записанные в их код. Может возникнуть вопрос: что мешает нам создать программу такого же типа, но обладающую более развитым интеллектом? Например, оракула, который в ответ на описание цели выдал бы план ее достижения, так же как Excel в ответ на ввод чисел в ячейки выдает их сумму, то есть не имея никаких «предпочтений» относительно результата своих расчетов или того, как люди могут им воспользоваться?

Классический путь написания программ требует от программиста довольно детального понимания задачи, которая должна быть разработана, чтобы можно было явно задать ход ее решения, состоящий из последовательности математически точно описанных шагов, выраженных в исходном коде[389]. (На практике программисты полагаются на библиотеки подпрограмм, выполняющих определенные функции, которые можно просто вызывать без необходимости разбираться в деталях их реализации. Но эти подпрограммы изначально были созданы людьми, которые все-таки отлично разбирались в том, что делали.) Этот подход работает при решении хорошо знакомых задач, чем и занято большинство существующих ПО. Однако он перестает работать в ситуации, когда никто толком не понимает, как должны быть решены стоящие перед программой задачи. Именно в этом случае становятся актуальными методы из области разработок искусственного интеллекта. В некоторых приложениях можно использовать машинное обучение для точной настройки нескольких параметров программ, в остальном полностью созданных человеком. Например, спам-фильтр можно обучать на массиве вручную отобранных сообщений электронной почты, причем в ходе этого обучения классифицирующим алгоритмом будут изменяться веса, которые он присваивает различным диагностическим атрибутам. В более амбициозном приложении можно создать классифицирующий механизм, который будет сам обнаруживать такие атрибуты и тестировать их пригодность в постоянно меняющейся среде. Еще более совершенный спам-фильтр может быть наделен некоторыми возможностями размышлять о компромиссах, на которые готов пойти пользователь, или о содержании анализируемых им сообщений. Ни в одном из этих случаев программисту не нужно знать наилучший способ отделения спама от добропорядочной почты — он должен лишь определить алгоритм, при помощи которого спам-фильтр сам улучшит свою эффективность за счет обучения, обнаружения новых атрибутов или размышлений.

По мере развития ИИ у программиста появится возможность сэкономить большую часть умственных сил, которые нужны для поиска путей решения стоящей перед ним задачи. В предельном случае ему будет достаточно задать формальный критерий успешности решения и предложить задачу ИИ. В своем поиске ИИ будет руководствоваться набором мощных эвристических правил и методов, позволяющих выявить структуру пространства возможных решений. ИИ мог бы продолжать свой поиск до тех пор, пока не будет найдено решение, удовлетворяющее критерию успеха. А затем или внедрить решение самостоятельно, или (например, оракул) сообщить о нем пользователю.

Элементарные формы такого подхода сегодня уже используются очень широко. Тем не менее ПО, в котором работают методы ИИ и машинного обучения, хотя и имеет некоторые шансы найти решение, неожиданное для людей, их создавших, во всех практических смыслах функционирует как обычные программы и не создает экзистенциального риска. В опасную зону мы попадаем лишь тогда, когда методы, используемые в поиске, становятся слишком мощными и универсальными, то есть когда они начинают переходить на общий уровень интеллекта, а особенно — на уровень сверхразума.

Есть (как минимум) два случая, когда могут возникнуть проблемы.

Во-первых, сверхразумный процесс поиска может найти решение, которое не только неожиданно, но и категорически неприемлемо. Это приведет к пагубному отказу по одному из обсуждавшихся выше типов (порочная реализация, инфраструктурная избыточность, преступная безнравственность). Особенно очевидна такая возможность, когда действуют монарх и джинн, напрямую воплощающие в жизнь найденные ими решения. Если компьютерные модели, призванные символизировать счастье, или заполонение планеты скрепками — первые из обнаруженных сверхразумом решений, удовлетворяющие критерию успеха, тогда мы получим сплошные смайлики и скрепки[390]. Но даже оракул, всего лишь сообщающий о решении, если все идет хорошо, — может стать причиной порочной реализации. Пользователь просит оракула представить план достижения определенного результата или технологию выполнения определенной функции, а затем следует этому плану или воплощает в жизнь технологию, в результате чего сталкивается с порочной реализацией точно так же, как если бы реализацией решения занимался сам ИИ[391].

Во-вторых, проблемы могут возникнуть на этапе работы самого ПО. Если методы, которыми оно пользуется для поиска решения, достаточно сложны, они могут допускать управление процессом поиска в интеллектуальном режиме. В этом случае компьютер, на котором запущено ПО, будет выглядеть уже не как инструмент, а скорее как агент. То есть программа может начать разрабатывать план проведения поиска. В ее плане будут определены области, которые следует изучить в первую очередь, методы их изучения, данные, которые нужно собрать, модель использования наилучшим образом имеющихся вычислительных мощностей. Разрабатывая план, отвечающий внутреннему критерию ПО (в частности, который имеет довольно высокую вероятность привести к решению, удовлетворяющему определенному пользователем критерию в отведенное на это время), программа может остановиться на какой-то необычной идее. Например, план может начаться с получения дополнительных вычислительных мощностей и устранения потенциальных препятствий (в том числе людей). Столь «творческий подход» вполне возможен после достижения ПО высокого интеллектуального уровня. Если программа решит реализовать такой план, это приведет к экзистенциальной катастрофе.

ВРЕЗКА 9. НЕОЖИДАННЫЕ РЕЗУЛЬТАТЫ СЛЕПОГО ПОИСКА

Даже простые процессы эволюционного поиска иногда приводят к совершенно неожиданным для пользователя результатам, которые тем не менее формально удовлетворяют поставленным критериям.

Область способного к эволюции аппаратного обеспечения представляет много примеров данного явления. Поиск проводится при помощи эволюционного алгоритма, который прочесывает пространство возможных схем аппаратных средств и тестирует каждую из них на пригодность путем реализации каждого варианта в виде интегральной схемы и проверки правильности ее функционирования. Часто в результате эволюционного дизайна удается достичь значительной экономии. Например, в ходе одного из подобных экспериментов была обнаружена схема дискриминации частот, которая функционировала без тактового генератора — компонента, считавшегося обязательным для выполнения такого рода функции. Исследователи оценили, что схемы, полученные в результате эволюционного дизайна, на один-два порядка меньше, чем те, которые для тех же целей создали бы инженеры-люди. Такие схемы использовали физические свойства входящих в них компонентов совершенно нетрадиционными способами, в частности, некоторые активные и необходимые для работы компоненты вообще не были соединены с входными или выходными ножками! Вместо этого они взаимодействовали с другими компонентами за счет того, что обычно считается досадными помехами: скажем, электромагнитных полей или нагрузки источника питания.

Другой эксперимент по эволюционной оптимизации с заданием разработать осциллятор, привел к исчезновению из схемы, казалось бы, еще более необходимого компонента — конденсатора. Когда успешное решение было получено и ученые посмотрели на него, то первой реакцией были слова: «Это не будет работать!» Однако после более тщательного анализа оказалось, что алгоритм, словно секретный агент Макгайвер[392], переконфигурировал свою материнскую плату, лишенную датчиков, в импровизированный радиоприемник, использовав дорожки печатной схемы в качестве антенны для приема сигналов, генерируемых компьютером, который располагался поблизости в той же лаборатории. Затем эти сигналы усиливались схемой и преобразовывались в выходной сигнал осциллятора[393].

В других экспериментах эволюционные алгоритмы разрабатывали схемы, которые определяли, что материнскую плату проверяли осциллографом или что в лаборатории в розетку включали паяльник. Эти примеры показывают, как программы в процессе свободного поиска могут изменить назначение доступных им ресурсов, чтобы обеспечить себе неожиданные сенсорные возможности такими средствами, которые привычно мыслящий человеческий ум не готов не только использовать, но и просто понять.

Тенденция эволюционного поиска: отыскивать «хитрые» решения и совершенно неожиданные пути достижения цели — проявляется и в природе, хотя мы считаем вполне нормальными знакомые нам результаты биологической эволюции, даже если и не были бы готовы спрогнозировать их. Зато можно провести эксперименты с искусственным отбором, в ходе которых увидеть работу эволюционного процесса вне рамок привычного контекста. В таких экспериментах исследователи могут создавать условия, редко встречающиеся в природе, и наблюдать за их результатами.

Например, до 1960-х гг. среди биологов было распространено мнение, что популяции хищников ограничивают свой рост, чтобы не попасть в мальтузианскую ловушку[394]. И хотя индивидуальный отбор работал против такого ограничения, многие считали, что групповой отбор должен подавлять индивидуальные склонности использовать любые возможности для продолжения рода и поощрять такое поведение, которое благоприятно сказывается на всей группе или популяции в целом. Позднее теоретический анализ и моделирование показали, что хотя групповой отбор и возможен в принципе, он способен победить индивидуальный отбор в очень редко встречающихся в природе условиях[395] Зато такие условия могут быть созданы в лаборатории. Когда при помощи группового отбора особей мучного хрущака (Tribolium castaneum) попытались добиться уменьшения размера их популяции, это действительно удалось сделать[396]. Однако методы, благодаря которым был получен требуемый результат, включали не только «благоприятное» приспособление в виде снижения плодовитости и увеличения времени на воспроизводство, которых можно было бы наивно ожидать от антропоцентричного эволюционного поиска, но и рост каннибализма[397]

Как показывают примеры, приведенные во врезке 9, процессы неограниченного поиска решений иногда выдают странные, неожиданные и не антропоцентричные результаты даже в нынешнем своем весьма ограниченном виде. Современные поисковые процессы неопасны, поскольку слишком слабы, чтобы разработать план, способный привести к их господству над миром. Такой план должен включать чрезвычайно сложные шаги вроде создания новых видов оружия, на несколько поколений опережающих существующие, или проведение пропагандистской кампании, гораздо более эффективной, чем те, что доступны современным механизмам манипулирования людьми. Чтобы у машины появилась возможность хотя бы помыслить об этих идеях, не говоря уже об их воплощении в жизнь, вероятно, ей нужно уметь представлять мир как минимум так же реалистично и детально, как это делает обычный взрослый человек (хотя отсутствие знаний в определенных областях может быть скомпенсировано чрезвычайно развитыми навыками в других). Пока это далеко превышает уровень имеющихся систем ИИ. А учитывая комбинаторный взрыв, который обычно пресекает попытки решить сложные задачи планирования при помощи методов перебора (мы видели это в первой главе), недостатки известных алгоритмов не могут быть преодолены простым наращиванием вычислительной мощности[398]. Однако по мере развития процессов поиска или планирования растет и их потенциальная опасность.

Возможно, вместо того чтобы позволить спонтанное и опасное развитие целенаправленного поведения агентов при помощи мощных поисковых алгоритмов (включая процессы планирования и прямого поиска решений, удовлетворяющих определенным критериям пользователя), лучше было бы создать агента намеренно. Наделив сверхразум явной структурой агентского типа, можно было бы повысить его предсказуемость и прозрачность. Хорошо разработанная система с четким разделением между целями и навыками позволила бы нам делать прогнозы относительно результатов, которые она будет выдавать. Даже если мы не сможем точно сказать, к какому мнению придет система или в каких ситуациях окажется, будет понятно, в каком месте можно проанализировать ее конечные цели и, как следствие, критерии, которыми она воспользуется при выборе своих действий и оценке потенциальных планов.

Больше книг — больше знаний!

Заберите 20% скидку на все книги Литрес с нашим промокодом

ПОЛУЧИТЬ СКИДКУ