Правда о пластичности мозга

Открытия в области природы и степени пластичности мозга привели к огромному прогрессу в понимании того, что происходит у нас в голове в процессе обучения[74]. В результате стремительно выросло количество продуктов, которые якобы усиливают пластичность мозга. Реклама многих обучающих продуктов основана на том, что главным их преимуществом называют повышение пластичности мозга. Родителей привлекает, что они могут «нарастить» своему ребенку супермозг и сын или дочь станут умнее других детей. Но что такое пластичность и что следует делать родителям для ее развития?

Пластичность – это способность мозга формировать новые синапсы, то есть связи между нервными клетками, и даже новые нервные пути. Мозг создает и укрепляет связи на протяжении всей жизни, в результате этого обучение ускоряется, а способность получать и применять знания усиливается. Кроме того, мозг способен отсекать те настройки или связи, которые не используются и перестали быть полезными[75]. Если вы когда-нибудь учились играть на музыкальном инструменте, то знаете, что со временем навыки становятся все лучше – вы начинаете бегло читать ноты, движения пальцев становятся быстрее и увереннее, вы контролируете дыхание и т. д. В результате вам становятся по плечу даже сложные произведения. Однако если прекратить занятия, а потом, лет через двадцать, взять в руки инструмент и попытаться сыграть на нем, то получится далеко не так хорошо, как раньше.

То, как мы учимся музыке, а потом теряем навыки, хорошо иллюстрирует принцип пластичности мозга: сначала вы его настраиваете, а затем теряете часть этих настроек, если навык (в нашем случае – игра на инструменте) не используется. Довольно много навыков «отсекается» в первые три года жизни ребенка, когда его мозг формируется под влиянием информации из окружающего мира, в том числе от родителей, воспитывающих его интуитивно. А в следующий раз «отсечение» настроек происходит в юности, перед вступлением во взрослую жизнь, когда формирование архитектуры мозга заканчивается[76].

Значительная часть того, что нам известно о пластичности мозга, было получено в результате исследований, которые проводились на приматах, не относящихся к человекообразным, а также на кошках и грызунах. Метод исследования обманчиво прост: ученые воздействуют на животных звуком, изображением или и тем и другим одновременно и наблюдают за изменениями в их мозге[77]. Мозг начинает работать, его деятельность стимулирует его развитие и, по сути, способствует собственной пластичности. Однако имеет значение, чем именно вы занимаетесь. Вот, например, подтягивания на турнике укрепляют мышцы рук, но не развивают мышцы ног так хорошо, как бег. Поэтому, чтобы лучше бегать, вам не нужно подтягиваться, а нужно именно бегать! Так же и с мозгом: если вы будете наблюдать, как на экране сменяются числа, то просто натренируетесь наблюдать за сменой чисел, но не считать. И не верьте в миф, будто наблюдение за сменой цифр необходимо для изучения математики. За всю историю человечества, даже недавнюю, никто из великих математиков не занимался этим, зато они проводили много времени за решением математических задач. Ни Евклид, живший в Александрии в 300-х годах до н. э. и считавшийся одним из величайших математиков своего времени, ни даже Эйнштейн в своем XX веке не рассматривали цифры на экране компьютера!

Когда человек попадает в новые условия, архитектура и настройки его мозга изменяются. В данном случае «настройка» – это аксонные связи между участками мозга и видами деятельности, которые выполняют эти участки. Как архитектор чертит план разводки электричества для вашего дома, указывая, где пролягут провода, ведущие к духовке, холодильнику, кондиционеру, так и исследователи чертят диаграмму связей мозга. В процессе исследований они установили, что у животных (и людей) кора головного мозга постоянно меняется под влиянием обучения. Оказывается, «связи» в мозге постоянно «переподключаются», настраиваясь на информацию из окружающего мира.

Одним из первых эти исследования стал проводить Майкл Мерцених, сегодня почетный профессор Калифорнийского университета в Сан-Франциско и член Национальной академии наук. В 1984 году Мерцених провел изящный эксперимент с совиными обезьянами и выяснил интересную вещь: когда обезьяна лишалась пальца, область в сенсорном отделе мозга (теменной доле), «запрограммированная» интерпретировать ощущения с этого пальца, переключалась на обработку данных с другого пальца. То есть функция этой области мозга «пластична». Каким бы простым ни казалось это открытие, оно совершило революцию в нейробиологии. До проведения подобных экспериментов ученые считали: если участок мозга настроен на выполнение какой-то функции, его невозможно перенастроить на другое[78].

Нейробиолог из Университета Вандербильта Джон Кас получил похожие результаты, когда проводил эксперименты с участием людей с ампутированными конечностями. В статье, опубликованной в престижном научном журнале Nature, он пишет: «Мозг часто меняет свою организацию после повреждения источников сенсорной информации. И тогда нейроны начинают реагировать на оставшиеся источники». Он показал, что в течение нескольких месяцев восстановления после ампутации руки части мозга, которые раньше регистрировали ощущения этой руки, начали реагировать на ощущения, идущие от кисти другой руки[79].

Оба этих исследования показывают, что мозг пластичен и вы можете «научить старый нейрон новым трюкам». Если нейрон остается «без работы», из-за того что рука или палец, активировавшие его, утрачены, то нейрон берется за новую работу, принимая информацию из другой области. Вполне пригодный нейрон или участок мозга простаивал бы без дела, если бы мозг не позволял ему сменить свое применение. Эта способность пластичной коры полезна и для выздоровления, и для эффективного распределения ресурсов мозга.

Но как связано обучение и пластичность мозга? Более поздние исследования Мерцениха и его коллег показали, что пластичность усиливается не только в период восстановления после травм, но и во время приобретения знаний и навыков. Чтобы протестировать нервную реакцию на обучение обезьяны (ее научили стучать пальцами в определенной последовательности), ученые составили карту активации мозга в высоком разрешении. Затем Мерцених научил обезьяну стучать пальцами в сложной последовательности и, пока она этим занималась, составил новые карты. Ученый обнаружил: обезьяна стучала быстрее и делала меньше ошибок в последовательности, когда ей начинали «помогать» новые области мозга. Для выполнения задачи были задействованы дополнительные клетки мозга. Кроме того, по мере того, как обезьяны, участвовавшие в эксперименте, начинали стучать пальцами более искусно, для выполнения этой задачи использовалось все больше клеток мозга. Их пластичный мозг выделял больше клеток и нервных цепочек на эту задачу по мере того, как обезьяны учились[80] и все лучше выполняли задание. Неинвазивные исследования, проводившиеся на людях, позволяют предположить, что пластичность мозга, наблюдаемая у обезьян и других приматов, аналогична тому, что происходит и в человеческом мозге.

Например, подобная пластичность наблюдается у ребенка, который учится читать. Сначала у него нет частей мозга, настроенных конкретно на чтение. Но по мере того как ребенок учится, все больше клеток мозга и нервных цепочек привлекается к этой работе. Мозг «включает» свою пластичность, когда ребенок начинает узнавать слова и понимать прочитанное[81]. Речевые центры расширяются, чтобы включить в себя чтение, но развиваются и новые цепочки, соединяющие написанные слова с ранее существовавшими значениями. Слово «мяч», которое ребенок уже понимает, теперь начинает ассоциироваться с буквами М-Я-Ч. Таким образом, обучение чтению – это форма пластичности мозга. Специальные компьютерные программы активируют и тренируют центры распознавания символов (то есть букв) в зрительной коре, используя пластичность мозга. Но то же самое происходит и при диалоговом чтении. Оно не только «настраивает» центры распознавания букв, но и естественным образом использует пластичность мозга для формирования аксонных связей с речевыми и мыслительными центрами. Во время упражнений на компьютере этого не происходит.

Эти и другие удивительные открытия в области пластичности мозга часто используются для рекламы продуктов, предназначенных в качестве «зарядки для мозга». Но если эксперимент показал, что какой-то конкретный вид деятельности способствует пластичности мозга и обучению, это не означает, что данный вид деятельности необходим для достижения эффекта и он – единственный способ добиться пластичности.

В действительности любое обучение – это форма пластичности мозга. Родители, которые учат своего ребенка новым словам во время игры с реальными игрушками, использует пластичность мозга ничуть не меньше, а может, и больше, чем новейший DVD для «маленьких гениев» или компьютерная «зарядка для мозга». Любая информация, будь то слова матери, обращенные к малышу, игра в кубики, катание с горки вместе с папой, обучение математике, прослушивание музыки (неважно – классической, диско, кантри или джаза) или компьютерная игра для «тренировки мозга», активирует пластичность мозга[82]. В тренировке пластичности мозга с помощью компьютера нет ничего уникального или волшебного – по крайней мере, для мозга.

Это касается даже компьютерных игр, разработанных учеными, которые изучают мозг и пытаются иногда перевести результаты своих исследований в «научные» обучающие продукты. Майкл Мерцених разработал и рекламирует компьютерные игры для компаний под названием Scientific Learning[83] и BrainSpark[84]. Они обещают улучшить ораторские навыки и понимание прочитанного у детей[85]. Даже продукты, созданные нейробиологами, не обязательно способствуют улучшению навыков речи, слушания и чтения.

Профессор Пол Йодер из Университета Вандербильта и я отмечали в работе, опубликованной в журнале International Journal of Developmental Neuroscience, что типично развивающиеся дети хорошо учатся различать звуки речи, даже если не выполняли соответствующие упражнения и не играли в компьютерные игры[86]. В их мозге с помощью информации, поступающей естественным образом от родителей и других людей, развивается прекрасно организованная слуховая кора. Поступающая естественным путем информация отлично подходит для обучения речи как средства понимания устного языка, а не просто зазубренного навыка. А неестественная звуковая информация – в данном случае изолированные звуковые сигналы – не приведет к правильной настройке мозга.

Давайте подробнее рассмотрим исследования, в которых сравнивается интуитивное обучение и компьютерные упражнения. Так мы лучше поймем, как работает пластичность мозга в реальных ситуациях. Мерцених и его коллеги не только открыли механизмы пластичности, связанные с осязанием, но поняли, как мозг настраивается на восприятие речи. Та часть исследований, которая проводилась на животных, показала: тип звуковой информации и момент ее поступления воздействуют на слуховые центры мозга. Например, если крысы регулярно слышат высокий звук, большее количество нейронов и большая область слуховых центров их мозга начинает обрабатывать высокий звук. Если приучить крыс к тому, что после конкретного звука (например, пульсирующего звука, как у сирены) появляется еда, то большая часть их мозга будет задействована в распознавании и определении источника такого звука. При этом крысы, которые не слышали таких звуковых сигналов в детстве, гораздо хуже выявляют и обрабатывают эти звуки во взрослом возрасте. Но, натренировавшись на сложных звуках, эти крысы все-таки приучаются искать пищу и со временем начинают лучше выявлять и обрабатывать самые разные звуковые сигналы.

Это исследование помогло Мерцениху и его коллегам сформулировать теорию о том, что дети, которые с трудом учатся говорить и понимать сказанное, испытывали ту же проблему, что и крысы, не слышавшие звуков в раннем возрасте. Ученый предложил проводить специальные компьютерные слуховые тренировки, чтобы использовать пластичность мозга для восполнения недостатка звуков.

Другая команда исследователей – профессор Пола Таллал и ее коллеги – продемонстрировали, что дети, у которых были проблемы в освоении языка, действительно с трудом обрабатывают звуки речи. Звуковая информация поступает быстро и непостоянно, поэтому неудивительно, что некоторые дети не успевают за стремительным потоком информации. Объединив свои исследования, Мерцених и Таллал создали специальное программное обеспечение для того, чтобы дети научились различать отдельные речевые и неречевые звуки – например, повышающуюся и понижающуюся интонацию. Скажем, фонетическая разница между английскими словами «hat» и «bat» заключается в первом звуке: «h» в слове «hat» и «b» в слове «bat». Некоторые дети не видят такой тонкой разницы, поэтому программное обеспечение было направлено на развитие этого навыка и обучение различению подобных фонетических различий – в надежде улучшить понимание речи[87]. Увы, исследования показали, что программа работала не совсем так, как надеялись ученые. Но это не помешало Scientific Learning и BrainSpark успешно продаваться.

Хотя дети действительно учились различать подобные звуки, новые навыки не улучшали их понимания того, что им говорили вне занятий[88]. Что пошло не так? Передовые исследования Мерцениха и Таллал осветили основные принципы пластичности мозга. Но чтобы понять, почему компьютерные игры на развитие слуховой пластичности мозга не работают, надо понять, как пластичность мозга функционирует естественным и интуитивным путем. Даже нормальные дети рождаются с относительно слабыми навыками обработки звуковой информации, и их мозг настраивается без специальной компьютерной тренировки. Интуитивное, транзакционное обучение прекрасно подходит для развития этих навыков. Поэтому, даже когда способность обрабатывать звуковую информацию не развивается, нужно не изолировать «особый» навык (такой, как обработка речи), а обеспечить дополнительное транзакционное воздействие. Так можно добиться, чтобы ребенок и его мозг учились действительно нужному – слушать и говорить, а не просто понимать, что «ба» и «да» звучат по-разному.

Конечно, пластичность мозга существовала задолго до того, как Мерцених и Таллал выделили нервные процессы, и задолго до изобретения компьютеров. Мозг настраивался и продолжает настраиваться без специального вмешательства в навыки. Крысята совершенствуют свою слуховую кору благодаря пластичности мозга, даже когда их не изучают в нейробиологической лаборатории. Как и дети. На самом деле изучать слуховую пластичность крыс следует в звуконепроницаемых изолированных лабораториях, иначе посторонние шумы развивают слуховые центры их мозга и мешают эксперименту. Главное, что информация, поступающая естественным образом из окружающего мира, активирует пластичность мозга и настраивает слуховые центры на нормальное функционирование в реальном мире.

Аналогично, до появления специального программного обеспечения дети успешно учились различать слова «hat» и «bat», потому что реакция родителей способствовала развитию пластичности их мозга. Моей третьей внучке Адалин восемь месяцев, и она агукает, сидя в своем стульчике. Ее отец, мой старший сын Энди, и мать Молли кладут перед ней несколько игрушек. Одна из игрушек – утка, и Адалин говорит про нее «da» (duck). Энди и Молли рады ее попыткам и раз десять повторяют «duck» сразу после того, как Адди сказала «da». Девочка по-прежнему говорит «da», но через некоторое время ей удается сказать «duck». Всем весело: Молли и Энди улыбаются и двигают игрушку перед Адди туда-сюда, а той нравится внимание родителей. Как думаете, в этом эпизоде интуитивного воспитания развивающаяся слуховая кора Адди учится различать разницу между «da» и «duck»? Могу вас уверить, что пластичность мозга развивается!

Используя звуки, как в словах «hat», «cat» и «that», ученые изучают, как мозг обрабатывает звуки. В конце концов они получают представление о работе пластичности мозга. Это важная цель. Но, наблюдая за успехами детей, родители могут неверно решить, будто пластичность мозга развивается только в научно контролируемых условиях. Или что лабораторные методы – оптимальный способ использовать пластичность.

Мозг учится тому, чему его учат. Если программное обеспечение тренирует его различать звуки, то этому он и научится, и на это настроится. Но этот навык не поможет понимать, что говорят другие люди, не научит читать. А все потому, что различение звуков – лишь малая часть необходимого мозгу для понимания устной речи и чтения. Если хотите, чтобы мозг настроился на устную речь и чтение, то поступающей информацией должна быть настоящая устная речь и диалоговое чтение. Если будете разбивать речевой сигнал на компоненты, ничего не получится. И если хотите, чтобы устная речь стала инструментом коммуникации с другими людьми, информация должна поступать в контексте взаимодействия между людьми. И будет задействовано еще больше областей мозга.

Когда ребенок тянется за шапкой и отец говорит «hat», это взаимодействие запускает развитие пластичности детского мозга. Мозг ребенка не только обрабатывает фонетические составляющие слова «hat», но и зрительный образ шапки, социальный контекст (игра с отцом) и значение слова – реальная шапка. Когда отец, скорее всего интуитивно, надевает шапку сначала себе на голову, а затем на голову ребенку, речевые звуки слова «hat» начинают ассоциироваться со свойствами шапки и ее функцией (покрывать голову). Предположим, что ребенок продолжает играть с отцом и случайно видит фотографию летучей мыши. Теперь ребенок слышит, как отец говорит «bat», и это слово, конечно, отличается по звучанию от «hat». Но малыш воспринимает не только разницу звуков «h» и «b», но и свойства летучей мыши и шапки, а также функции. Обучение только различению звуков «h» и «b» не даст ребенку информацию, необходимую для понимания разницы между «hat» и «bat» в реальной жизни. При интуитивном воспитании автоматически происходит обучение всем этим элементам и применяется мультисенсорный подход. Осязание, зрение, речь и слух вместе обеспечивают контекст в безопасной, развивающей среде.

• Мозг вашего ребенка готов к обучению с самого рождения. Родители, доверяющие своей интуиции, уверенно, естественно и позитивно реагируют на своего ребенка. Это способствует развитию пластичности его мозга, обеспечивает правильную его настройку на обучение в течение всей жизни.

• Родители, доверяющие своей интуиции, знают: мозг учится тому, чему его учат. Лучше позволять ребенку приобретать реальный жизненный опыт, а не давать ему компьютерные игры, упражнения или обучающие карточки. Для ребенка полезнее диалоговое чтение – когда вы садитесь вместе и читаете книги, – а не компьютерные игры и не упражнения с карточками, на которых изображены буквы.

• Настройка мозга и его пластичности происходит каждый раз во время обучения. Для настройки мозга компьютеры и обучающие карточки не требуются. Они могут сбивать ребенка с толку и даже задерживать его развитие.

• Родители, доверяющие своей интуиции, знают: игры с ребенком – лучший способ научить различные области мозга (зрительные, обонятельные, осязательные, речевые, слуховые и т. д.) работать вместе. Лучший опыт – мультисенсорный. А инициатива ребенка – сигнал родителям, что его мозг готов учиться.

• Родители, доверяющие своей интуиции, знают, что помогают ребенку закладывать основы оптимального взрослого мозга, и скептически относятся к схемам «быстрого обогащения» – ведь такие схемы обманывают их и ребенка. Детский мозг настраивается на рассуждения и решение проблем. В будущем эти навыки можно адаптировать и применить к любым знаниям и проблемам. А это гораздо полезнее, чем учить мозг автоматическому повторению. В деле развития мозга компьютерные игры и обучающие карточки не сравнятся с Матерью Природой и интуитивным воспитанием.

Далее в этой книге мы снова и снова будем убеждаться, что попыткам искусственно ускорить обучение и настройку мозга не сравниться с интуитивным воспитанием.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК