Зверинец частиц

We use cookies. Read the Privacy and Cookie Policy

Первое свидетельство существования новых частиц было найдено в камерах Вильсона, которые экспериментаторы использовали для восстановления траекторий заряженных частиц. Камера Вильсона состоит из герметичного бака, заполненного перенасыщенными парами воды и спирта. Перенасыщение паров приводит к тому, что любая пролетающая через камеру частица оставляет за собой конденсационный след.

В 1933 г. Карл Андерсон, физик, работавший в Калтехе[40], использовал такие камеры для подтверждения предсказанного за несколько лет до этого британским физиком Полем Дираком существования странного нового вида материи, называемого антивеществом. Предпринятая Дираком попытка объединения квантовой физики и теории электромагнетизма позволила объяснить многие особенности электронов, но его уравнения имели еще и полностью зеркальное решение, которое не соответствовало ничему, виденному до тех пор в лабораториях.

Уравнения Дирака были в некотором смысле аналогичны уравнению x2 = 4. У этого уравнения есть не только решение x = 2, но и зеркальное ему решение x = –2, так как (–2)2 тоже равно 4. Из зеркального решения уравнений Дирака следовало, что существует зеркальный вариант электрона, имеющий положительный заряд. Большинство считало это решение математическим курьезом, порожденным уравнениями, но, когда четыре года спустя Андерсон заметил в своей камере следы частицы, которая вела себя как электрон, отраженный в зеркале[41], антивещество перешло из теории в область реальности. Открытые Андерсоном позитроны, как их стали называть, возникли в результате взаимодействия частиц в верхних слоях атмосферы. И они не были единственными вновь появившимися частицами.

Вскоре после этого в камере оставили следы еще более странные частицы, вообще никем не предсказанные. В 1936 г. Андерсон начал анализировать эти новые следы вместе со своим аспирантом Сетом Неддермейером. Новые частицы, обнаруженные в камере Вильсона, были отрицательно заряженными. Но они не были электронами. Следы, оставленные этими новыми частицами, соответствовали значительно большей массе. Массу частицы можно определить по степени отклонения ее траектории в магнитном поле, в точности как это делал Томсон. Эта частица имела заряд, равный заряду электрона, но изогнуть ее траекторию было гораздо труднее.

Частица, называемая теперь мюоном, была одной из первых новых частиц, полученных из взаимодействия космических лучей с атмосферой. Мюон нестабилен. Он быстро распадается на другие частицы, чаще всего на электрон и два нейтрино. Нейтрино было еще одной новой частицей, существование которой было предсказано для объяснения распада нейтронов в протоны. Поскольку нейтрино почти не имеют массы и не имеют электрического заряда, они были экспериментально обнаружены лишь в 1950-х гг., но с теоретической точки зрения они были необходимы для объяснения распада как нейтронов, так и вновь найденных мюонов. Среднее время жизни мюона составляет 2,2 микросекунды, чего хватает, чтобы достаточное количество таких частиц достигло поверхности Земли не распавшись.

Мюоны помогли подтвердить предсказание о замедлении времени при приближении к скорости света, сделанное Эйнштейном в специальной теории относительности. С учетом периода их полураспада число мюонов, достигающих поверхности Земли, должно быть гораздо меньше наблюдаемого. Это противоречие объясняется замедлением времени на околосветовых скоростях. Если бы к мюону можно было прикрепить часы, они показали бы, что до его соударения с Землей прошло меньшее время. Таким образом, большее число мюонов просуществовало бы до этого момента, что и подтверждается экспериментом. Мы еще вернемся к этому вопросу на пятом «рубеже», когда будем рассматривать время и связанные с ним пределы познания.

Мюон казался поразительно похожим на электрон, но более массивным и менее стабильным. Услышав об этом открытии, американский физик Исидор Раби язвительно заметил: «Такого никто не заказывал». Существование в природе более тяжелой и неустойчивой копии электрона казалось странным и ненужным. Раби и не подозревал, как много других частиц еще оставалось в этом меню.

Осознав, что взаимодействие космических лучей с верхними слоями атмосферы порождает новые формы материи, физики решили не ждать, пока частицы долетят до камер, установленных в лабораториях, так как к этому моменту они могут распасться на уже известные виды материи. Поэтому камеры Вильсона стали устанавливать на большей высоте, надеясь поймать в них другие частицы.

Исследователи из Калтеха выбрали вершину горы Вилсон, расположенной вблизи города Пасадены, в котором они работали. И действительно, они обнаружили новые следы, указывающие на существование новых частиц. Другие группы, пытаясь зарегистрировать другие взаимодействия, устанавливали фотопластинки в обсерваториях в Пиренеях и в Андах. Ученые, работающие в Бристоле и Манчестере, тоже обнаружили на своих фотопластинках следы новых частиц. Как оказалось, Раби следовало беспокоиться не о мюонах. На свет явился целый зверинец частиц.

Масса некоторых из них была равна одной восьмой массы протона или нейтрона. Такие частицы, названные пионами, встречались двух видов – с положительным и отрицательным зарядом. Электрически нейтральная разновидность, зарегистрировать которую было труднее, была открыта позже. В Манчестере были получены два снимка из камеры Вильсона, на которых некая нейтральная частица, по-видимому, распадалась на пионы. Масса этой новой частицы была приблизительно равна половине массы протона. В камере, установленной на вершине горы Вилсон, были получены другие свидетельства, подтверждающие открытие таких частиц, названных каонами, которых было найдено четыре вида.

Со временем открывали все новые и новые частицы, так что общая картина стала совершенно неподъемной. В 1955 г. нобелевский лауреат Уиллис Лэмб съязвил в своей благодарственной речи: «Если раньше за открытие новой частицы давали Нобелевскую премию, то теперь за это следовало бы штрафовать на десять тысяч долларов». Когда ученые выяснили, как химические элементы образуются из электронов, протонов и нейтронов, они надеялись упростить периодическую систему. Однако оказалось, что эти три частицы были лишь вершиной айсберга. Теперь обнаружилось более сотни разных частиц, которые, по-видимому, образовывали те кирпичики, из которых состоит материя. Энрико Ферми сказал тогда одному студенту: «Молодой человек, если бы я знал названия всех этих частиц, я был бы ботаником».

Начались поиски объединяющего принципа, который объяснил бы существование мюонов, пионов, каонов и других частиц, – так же как Менделееву удалось найти порядок классификации элементов и логику их расположения в периодической системе.

Основополагающая структура, которая наконец позволила понять логику этого зверинца частиц – так сказать, нарисовать план, позволяющий не заблудиться в зоопарке, – оказалась в итоге математическим объектом.