Вот оно есть, а вот его нет!

We use cookies. Read the Privacy and Cookie Policy

Совершенное Кантором открытие всех этих уровней бесконечности привело к появлению вполне реального примера задачи, которая не могла быть решена в рамках существующих аксиом математики – утверждения без доказательства, непроверяемого, лежащего за пределами того, что мы можем знать. Этот вопрос касался самой сути того, что мы называем числом, и показал, насколько числа на самом деле непросты.

Кантор хотел узнать, существуют ли множества чисел, обладающие большим размером, чем множество целых чисел, но все же достаточно малые для того, чтобы невозможно было установить их попарное соответствие со всеми бесконечными десятичными дробями. Другими словами, существует ли племя, члены которого помечены числами так, что оно превосходит племя целых чисел, но проигрывает племени бесконечных десятичных чисел? Бесконечность всех бесконечных десятичных чисел называют континуумом. Гипотеза о континууме утверждает, что не существует бесконечности, меньшей континуума, но большей бесконечности всех целых чисел.

Гильберт был настолько поражен гипотезой о континууме, что поместил проблему определения существования промежуточной бесконечности во главу своего списка из 23 задач, которые предстояло решить математикам XX в.

Кантор мучился этим вопросом всю свою жизнь. В какой-то момент он был убежден, что нашел доказательство того, что никакой бесконечности между этими двумя не существует. Но затем он нашел в нем ошибку. На следующий день он решил, что доказал обратное: промежуточная бесконечность существует. Как всегда верил сам Кантор, «в математике умение задавать вопросы ценнее, чем умение решать задачи».

Так оно и оказалось. Затруднения Кантора были связаны с тем, что оба ответа были правильными.

Решение этой задачи, полученное наконец в 1960-х гг., потрясло математическое сообщество до основания. Пол Коэн, логик из Стэнфорда, продемонстрировал, опираясь на работы Гёделя, что на основе аксиом, которые мы используем в нашей нынешней математике, невозможно доказать, существует ли множество чисел, размер которого находится строго между количеством целых чисел и количеством бесконечных десятичных дробей. Более того, он создал две разные модели чисел, которые удовлетворяли аксиомам математики: в одной из этих моделей ответ на вопрос Кантора был утвердительным, а в другой – отрицательным.

Не знаю, как Кантору понравился бы такой вывод. Он когда-то заявил: «Сущность математики заключается именно в ее свободе». Но не слишком ли большой оказалась эта свобода? Получилось, что существует не один, но несколько видов математики!

Некоторые считают этот момент аналогичным открытию существования множества разных видов геометрии в дополнение к евклидовой. В геометрии Евклида справедлив постулат о параллельных, в отличие от новых сферических и гиперболических геометрий. А теперь мы поняли, что существуют и разные модели чисел и некоторые из них содержат промежуточные бесконечности, а некоторые их не содержат.

И тем не менее математики испытали большое потрясение. Мы-то думали, что знаем числа. Пусть такие числа, как квадратный корень из двух или ?, иррациональны и имеют бесконечное десятичное представление, но нам казалось, что эти числа можно увидеть, отметить на линейке. Так что в случае чисел, которые мы знаем, казалось бы, должен иметься и ответ на вопрос Кантора. Есть ли на этой линейке подмножество чисел, строго большее, чем множество целых чисел, но строго меньшее, чем множество всех бесконечных десятичных чисел? Большинство математиков считало, что ответ должен быть «да» или «нет», но не «и да и нет». Но, несмотря на это, было доказано, что доказать ни то ни другое невозможно. Коллега Коэна Джулия Робинсон писала ему: «Ради бога, ведь есть лишь одна истинная теория чисел! Это мое религиозное убеждение». Интересно, однако, что, прежде чем отправить письмо, она зачеркнула последнее предложение. Но Кантора такая неопределенность, вероятно, не затруднила бы, потому что его религиозным убеждениям не противоречило приятие того, что превосходит человеческое знание.

Сколь многие из еще неразрешенных задач, остающихся в наших книгах по математике, окажутся недоказуемыми? Чтобы справиться с некоторыми из этих великих нерешенных задач, нам могут понадобиться новые аксиомы, которые позволят им стать доказуемыми. Гёдель считал, что именно в этом может крыться причина трудности доказательства гипотезы Римана, величайшей из нерешенных задач математики. Он сомневался в достаточности имеющихся у нас аксиом для преодоления многих из проблем теории чисел:

Мы сталкиваемся с бесконечной последовательностью аксиом, которая может быть продолжена все дальше и дальше, и никакого конца ей не видно […] Правда, в нынешней математике высшие уровни этой иерархии практически никогда не используются […] вполне возможно, что это свойство современной математики как-то связано с ее неспособностью доказать некоторые фундаментальные теоремы, например такие как гипотеза Римана[129].