Электроны на выброс: фотоэлектрический эффект

We use cookies. Read the Privacy and Cookie Policy

Металлы так хорошо проводят электричество потому, что в них имеется множество свободных электронов, способных перемещаться внутри металла. Поэтому, направив на кусок металла электромагнитное излучение, можно выбить из него такие электроны. Энергия волны передается электрону, и его собственная энергия возрастает настолько, что он может преодолеть силы, удерживающие его внутри металла. Именно этот процесс был ключевым элементом открытия электрона Томсоном, описанного на предыдущем «рубеже».

Если считать электромагнитное излучение волной, то должна существовать возможность увеличить энергию такой волны до того уровня, на котором она сможет выбить из металла электрон. Чем выше энергия волны, тем более сильный толчок получит электрон и тем большей будет скорость его вылета. Как было описано в предыдущем разделе, есть два способа увеличить энергию волны – или вибрирующей струны виолончели. Один состоит в повышении частоты волны, в ускорении вибрации. Если поступить таким образом, то, действительно, скорость выбиваемых электронов соответственно возрастает. Но если сохранять частоту неизменной, то увеличить энергию можно путем повышения амплитуды волны, то есть громкости звука струны. Странность заключается в том, что увеличение интенсивности волн при постоянной частоте, оказывается, не влияет на скорость, с которой вылетают электроны. Вместо этого возрастает число электронов, выбиваемых из металла.

Более того, уменьшая частоту волны при одновременном увеличении амплитуды, суммарную энергию можно поддерживать на постоянном уровне, и тем не менее в некоторой точке такая волна, по-видимому, утрачивает способность к выбиванию электронов. Существуют такие частоты, ниже которых, как бы громко я ни играл на виолончели, энергия не выбивает ни одного электрона. Напротив, в случае высокочастотной волны громкость можно уменьшать сколько угодно: даже волна чрезвычайно низкой интенсивности по-прежнему способна выбивать электроны. Что происходит? Как объяснить такое странное поведение, известное в науке под названием фотоэлектрического эффекта?

Решение заключается в смене модели. До сих пор мы рассматривали процесс, на входе которого была волна, а на выходе – частица. Что, если попробовать другой вариант: частица на входе и частица на выходе? Возможно, ключевой элемент понимания действия падающего электромагнитного излучения следует искать в его корпускулярной природе.

Именно в этом и состоял коренной сдвиг мировоззрения, совершенный Эйнштейном в 1905 г., который многие называют annus mirabilis. В этом же году он предложил специальную теорию относительности, за которую мы возьмемся на одном из следующих «рубежей», а также теорию броуновского движения, обеспечившую самую убедительную поддержку идеи атомарного устройства материи, как было описано в предыдущей главе.

Эйнштейн предположил, что электромагнитное излучение или свет следует уподобить не волне, а пулеметной очереди, состоящей из мельчайших бильярдных шаров, в точности как предлагал еще Ньютон. Энергия каждой отдельной частицы зависит от частоты излучения. Эта новая идея дает нам модель, идеально описывающую те результаты, которые мы наблюдали в лаборатории. Каждый бильярдный шарик света имеет энергию, соответствующую минимальной энергии, вычисленной Планком для объяснения поведения излучения в печи. Так, электромагнитное излучение с частотой ? в модели Эйнштейна следует рассматривать как набор шариков, каждый из которых имеет энергию, равную h?. Введенные Планком скачки энергии попросту соответствуют добавлению к излучению новых световых шариков. Эйнштейн назвал такие шарики квантами света, но в середине 1920-х гг. они получили новое название, и теперь мы знаем их под именем фотонов.