Доказанная невозможность

We use cookies. Read the Privacy and Cookie Policy

Найденное древними греками доказательство иррациональности квадратного корня из двух было первым из многих математических доказательств невозможности тех или иных вещей. Другое доказательство невозможности касалось так называемой концепции «квадратуры круга». Математическая идея квадратуры круга даже вошла во многие языки в качестве выражения чего-то невозможного. Квадратура круга относится к числу геометрических задач, которые древние греки обожали решать с использованием линейки (без делений) и циркуля (для построения дуг окружностей). Они придумали весьма изобретательные способы построения точных равносторонних треугольников, пятиугольников и шестиугольников при помощи этих инструментов.

Задача о квадратуре круга сводится к построению при помощи этих инструментов квадрата, площадь которого равна площади данного круга. Как греки ни старались, решение этой задачи им не давалось. Столь же неразрешимую задачу задал оракул на острове Делос. Жители этого греческого острова просили оракула посоветовать им, как избавиться от чумы, которую наслал на них бог Аполлон. Оракул ответил, что им следует удвоить размер алтаря Аполлона. Алтарь этот имел совершенную кубическую форму. Платон истолковал это указание как требование построить при помощи линейки и циркуля второй совершенный куб, объем которого был бы вдвое больше объема первого.

Если объем второго куба равен удвоенному объему первого, значит, длина его стороны должна быть равна произведению длины стороны первого куба на кубический корень из двух. Отмерить квадратный корень из двух просто, так как ему равна длина диагонали квадрата с единичной стороной; однако получить кубический корень из двух оказалось так трудно, что жители Делоса не смогли решить эту задачу. Может быть, при помощи геометрии и математики оракул просто хотел отвлечь внимание делосцев от стоявших перед ними более насущных социальных проблем.

Решение задач о квадратуре круга, удвоении куба и трисекции угла (третья классическая задача) оказалось невозможным. Но математики сумели доказать, вне всякого сомнения, что все эти вещи невозможны, только к XIX в. Ключ к доказательству невозможности этих геометрических построений появился лишь с развитием теории групп – языка, используемого для понимания симметрии, который и сам я использую в своих исследованиях. Оказалось, что при помощи циркуля и линейки можно построить только такие отрезки, длины которых являются решениями некоторых типов алгебраических уравнений.

Решение задачи о квадратуре круга требует построения при помощи циркуля и линейки отрезка длиной ? на основе отрезка единичной длины. Однако в 1882 г. было доказано, что ? – число не просто иррациональное, но трансцендентное, что означает, что оно не является решением никакого алгебраического уравнения. А это, в свою очередь, значит, что квадратура круга невозможна.

Математика очень хорошо умеет доказывать, что что-то невозможно. Одна из самых знаменитых теорем, содержащихся в книгах по математике, – это Великая теорема Ферма, утверждающая, что невозможно найти ненулевые целые числа, удовлетворяющие уравнению

xn yn = zn,

где натуральное число п больше 2. Это, очевидно, не так в случае n = 2, который соответствует уравнению, выведенному Пифагором для прямоугольного треугольника. Если n = 2, решений существует множество, например 32 + 42 = 52. На самом деле таких решений бесконечно много, и уже древние греки нашли формулу, по которой можно получить все такие решения. Но находить решения часто оказывается гораздо проще, чем доказать невозможность нахождения чисел, которые удовлетворяли бы любым из уравнений Ферма.

Как известно, Ферма считал, что нашел решение, но написал на полях своего экземпляра «Арифметики» Диофанта, что эти поля слишком малы для найденного им замечательного доказательства. Прошло целых 350 лет, прежде чем мой коллега по Оксфорду Эндрю Уайлс наконец смог представить убедительное доказательство того, почему целочисленные решения уравнения Ферма найти невозможно. Доказательство Уайлса занимает более сотни страниц, не считая тысяч страниц ранее разработанной теории, на которой оно основано. Так что для его изложения не хватило бы даже очень широких полей.

Доказательство Великой теоремы Ферма – это проявление подлинного мастерства. Я считаю честью для себя жить в то самое время, когда были найдены последние фрагменты этой головоломки.

До того как Уайлс продемонстрировал невозможность существования решения, все еще сохранялась возможность существования каких-нибудь особо хитрых чисел, которые могут быть решением одного из таких уравнений. Я помню великолепную первоапрельскую шутку, которая гуляла по математическому сообществу примерно в то же время, когда Уайлс объявил о своем доказательстве. Суть шутки состояла в том, что Ноам Элкис, уважаемый специалист по теории чисел из Гарварда, получил неконструктивное доказательство существования такого решения. Это первоапрельское электронное сообщение было написано весьма изобретательно, так как слово «неконструктивное» означало, что он не может прямо назвать числа, являющиеся решением уравнений Ферма, но из его доказательства следует, что решение должно существовать. Самое замечательное состоит в том, что многим это сообщение было переправлено через несколько дней после 1 апреля, когда шутка впервые вышла в свет, так что они понятия не имели, что она имеет отношение к первоапрельским розыгрышам.

Даже и без всевозможных розыгрышей математическое сообщество провело 350 лет, не зная, существует ли такое решение. Мы просто этого не знали. Но Уайлс в конце концов прекратил наши мучения. Его доказательство означает, что, сколько бы мы ни перебирали чисел, мы никогда не найдем такие три числа, которые будут решением одного из уравнений Ферма.