Пределы знания на малом масштабе

We use cookies. Read the Privacy and Cookie Policy

Принцип неопределенности не только объясняет непредсказуемость моей банки урана, но и устанавливает пределы знания, которое я могу получить, забираясь все глубже и глубже внутрь игральной кости, чтобы посмотреть, что там происходит.

Если пытаться точно измерить координаты одного из электронов внутри кости, то за уменьшение погрешности определения координат придется заплатить соответствующей неопределенностью импульса и, следовательно, энергии. Соотношение неопределенности Гейзенберга дает математическое выражение этого баланса. Но есть и еще одно обстоятельство. Поскольку энергия и масса связаны уравнением Эйнштейна E = mc2, то при достаточно высокой энергии может произойти рождение новых частиц. Затруднение состоит в том, что, если попытки определения положения частицы приводят к образованию новых частиц, это существенно усложняет исследование положения исходной частицы. Характерный масштаб, на котором возникает такое осложнение, называется комптоновской длиной волны частицы. Для электрона она составляет около 4 · 10–13 м.

При переходе к еще меньшим расстояниям неопределенность ситуации становится все сильнее. В некоторой точке неопределенность энергии возрастает настолько, что соответствующая масса становится достаточно большой для возникновения черной дыры. Как мы увидим на пятом «рубеже», черная дыра по самой своей природе удерживает в себе любую информацию в пределах определенного расстояния от центра дыры и препятствует ее высвобождению.

Это означает, что из принципа неопределенности вытекает существование встроенного предела, ограничивающего возможности исследования природы. Оказывается, что начиная с некоторого масштаба мы не можем получить дальнейшего доступа вглубь происходящего. Масштаб этот очень мал. Он составляет порядка 1,616 · 10–35 м и называется планковской длиной. Это чрезвычайно мало. Если увеличить точку, стоящую в конце этого предложения, до размеров наблюдаемой Вселенной, то планковская длина будет сопоставима с размерами точки до такого увеличения.

На предыдущем «рубеже» мы дошли до точки, после которой не могли далее делить материю; сейчас мы дошли до точки, после которой не можем далее делить пространство. Бред какой-то. Почему мы не можем говорить о точке, расположенной посередине между двумя точками, разделенными планковской длиной? Это вполне возможно с математической точки зрения, но, по-видимому, не с физической. Физика утверждает, что различить такие точки невозможно.

Из этого следует, что пространство на этом масштабе выглядит разрозненным, зернистым, дискретным – а вовсе не непрерывным, как полагал Ньютон. В таком представлении пространство оказывается скорее цифровым, чем аналоговым. А из этого, в свою очередь, следует, что фракталы, о которых мы говорили на первом «рубеже», не могут иметь какой-либо физической реальности в квантовой физике. Фрактал должен обладать бесконечной сложностью на любом масштабе, но квантовая физика останавливает увеличение масштаба на уровне планковской длины. Значит ли это, что фракталы первого «рубежа» существуют только в математическом воображении? Кажется, что квантовая физика и теория хаоса несовместимы друг с другом. Возможно, квантовая физика способна подавлять хаотические системы.

Следует оговориться, что такая невозможность проникнуть за планковскую длину существует в современной теории. Именно на этом масштабе перестают как следует работать квантовая физика и общая теория относительности. Нам нужна новая теория, и именно с этим связаны все те усилия, которые прилагают к разработке квантовой гравитации и теории струн. Например, в теории струн частицы представляют собой не точки, а конечные струны, длина которых имеет порядок планковской длины, причем разные частицы вибрируют с разной частотой. Существуют ли действующие на таком масштабе правила, которые позволяли бы извлекать информацию на еще более мелких масштабах?