Можем ли мы знать, чего именно мы знать не можем?

We use cookies. Read the Privacy and Cookie Policy

Покидая кабинет Барроу, я чувствовал себя довольно подавленно. Я искал то, чего мы не можем знать, но теперь я начал сомневаться, можем ли мы вообще знать хоть что-нибудь. Пока я ехал домой, одно предложение из книги Барроу продолжало звучать в моих ушах: «Идея невозможного включает для многих сигнал тревоги. Любое предположение, что человеческое понимание Вселенной и научный прогресс могут быть чем-то ограничены, является для некоторых опасным мемом, подрывающим веру в могущество науки в целом».

Если вернуться к «рубежам», которые мы рассмотрели раньше, ничто в них не кажется таким же неразрешимым, как вопрос о конечности или бесконечности Вселенной. Теория хаоса утверждает, что будущее непознаваемо, но мы можем подождать, пока это будущее не станет настоящим, и познать его. Деля на части игральную кость, можно дойти до того уровня, на котором пространство оказывается квантованным, так что до неделимого возможно дойти всего лишь за конечное число шагов. Конечно, продвижение по этой лестнице, ведущей вниз, может оказаться практически невозможным, но эта задача не является принципиально неразрешимой. А принцип неопределенности Гейзенберга не столько не позволяет нам получать ответы, сколько заставляет задуматься, правильно ли сформулированы наши вопросы. Проблема не в том, что мы не можем одновременно знать положение и импульс; открытие заключается в том, что задавать этот вопрос вообще бессмысленно.

Однако вопрос о бесконечности Вселенной не кажется неверно сформулированным. Либо Вселенная бесконечна, либо нет. Если она бесконечна, то с учетом того, что мы узнали о том космическом горизонте, за пределами которого мы ничего не можем знать, действительно трудная задача состоит в том, чтобы придумать способ узнать об этом.

Но тут меня посетило озарение. Возможно, вопрос о бесконечности Вселенной не столь непознаваем, как кажется. Не могут ли существовать менее прямые методы, которые могли бы привести нас к заключению о том, что Вселенная бесконечна? Ответ может находиться в моей собственной области. Математика была до сих пор чрезвычайно мощным телескопом для исследования Вселенной. Нельзя ли показать, что предположение о конечности Вселенной приводит к математическому противоречию с известными законами физики? Тогда нам пришлось бы заключить, что Вселенная бесконечна – или что наши законы физики неверны. В конце концов, именно так мы открыли иррациональные числа, десятичное разложение которых продолжается бесконечно и никогда не повторяется.

В этом и состоит могущество математики: она позволяет конечному мозгу познать бесконечное. Пифагорейцы показали, что длина диагонали единичного квадрата выражается числом, которое нельзя записать в виде отношения целых чисел. Такая длина может существовать, только если существуют числа, которые могут быть выражены лишь бесконечной и не повторяющейся десятичной дробью. Может быть, существование бесконечной Вселенной тоже когда-нибудь будет доказано при помощи того же средства, которое помогло нам открыть иррациональные числа, – доказательства от противного.

Возможно, истинный вывод состоит в том, что мы не можем знать, что такое «то, чего мы знать не можем», потому что предугадать появление новых идей, которые смогут перетянуть неизвестное в известное, чрезвычайно трудно. Так, вопреки заявлению Конта, мы смогли выяснить, из чего сделаны звезды.

Хотя та Вселенная, которую я когда-либо смогу увидеть или исследовать, так же конечна, как бумажная модель, стоящая у меня на столе, возможно, нам не следует слишком быстро поддаваться искушению непознаваемого. Может быть, математические телескопы разума однажды позволят нам пробить бумажный свод и узнать, действительно ли он окружен бесконечным пространством космоса.